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Abstract

This thesis aims to design and analyze population dynamics models dedicated to the dynam-
ics of somatic cells during the early stages of ovarian follicle growth. The model behaviors are
analyzed through theoretical and numerical approaches, and the calibration of parameters
is performed by proposing maximum likelihood strategies adapted to our specific dataset.
A non-linear stochastic model, that accounts for the joint dynamics of two cell types (pre-
cursors and proliferative), is dedicated to the activation of follicular growth. In particular,
we compute the extinction time of precursor cells. A rigorous finite state projection ap-
proach is implemented to characterize the system state at extinction. A linear multitype
age-structured model for the proliferative cell population is dedicated to the early follicle
growth. The different types correspond here to the spatial cell positions. This model is of
decomposable kind; the transitions are unidirectional from the first to the last spatial type.
We prove the long-term convergence for both the stochastic Bellman-Harris model and the
multi-type McKendrick-VonFoerster equation. We adapt existing results in a context where
the Perron-Frobenius theorem does not apply, and obtain explicit analytical formulas for the
asymptotic moments of cell numbers and stable age distribution. We also study the well-
posedness of the inverse problem associated with the deterministic model.

keys-words: cell population dynamics; multi-type deterministic and stochastic renewal
process; first hitting time; long time behavior; inverse problem; parameter calibration

I





Résumé

Cette thèse vise à concevoir et analyser des modèles de dynamique des populations dédiés
à la dynamique des cellules somatiques durant les premiers stades de la croissance du fol-
licule ovarien. Les comportements des modèles sont analysés par des approches théoriques
et numériques, et les valeurs des paramètres sont calibrées en proposant des stratégies de
maximum de vraisemblance adaptées à notre jeu de données spécifique. Un modèle stochas-
tique non linéaire, qui tient compte de la dynamique conjointe entre deux types cellulaires
(précurseur et prolifératif), est dédié à l’activation de la croissance folliculaire. Une approche
rigoureuse de projection par états finis est mise en œuvre pour caractériser l’état du sys-
tème à l’extinction et calculer le temps d’extinction des cellules précurseurs. Un modèle
linéaire multi-type structuré en âge, appliquée à la population de cellules prolifératives, est
dédié à la croissance folliculaire précoce. Les différents types correspondent ici aux positions
spatiales des cellules. Ce modèle est de type décomposable ; les transitions sont unidirec-
tionnelles du premier vers le dernier type. Nous prouvons la convergence en temps long du
modèle stochastique de Bellman-Harris et de l’équation de McKendrick-VonFoerster multi-
types. Nous adaptons les résultats existants dans le cas où le théorème de Perron-Frobenius
ne s’applique pas, et nous obtenons des formules analytiques explicites pour les moments
asymptotiques des nombres de cellules et de la distribution stationnaire en âge. Nous étu-
dions également le caractère bien posé du problème inverse associé au modèle déterministe.

mots-clés: dynamique de populations cellulaires ; processus de renouvellement multi-
type stochastique et déterministe ; premier temps d’atteinte ; comportement en temps long
; problème inverse ; calibration de paramètres
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Chapter I
Introduction

This thesis aims to model and analyze the cell population dynamics involved during the
formation of a tissue which is a rare example of morphogenesis1 taking place in a mammal
adult organism: the ovarian follicle. Specifically, the stages of its development that we
consider are tightly linked with issues addressed by developmental biology2. The main cellular
mechanisms involved during the early stages of the development of the ovarian follicle are
cell division and transition (differentiation). In the first section, we present a non-exhaustive
list of models dedicated to represent cell population dynamics. In the second section, we
present our biological object of study, the ovarian follicle. The last section is dedicated to
the contributions and the outline of this thesis.

I.1 Modeling cell dynamics

Before introducing the cell dynamics models used in this thesis, we briefly explain our views
on the general purpose and steps of the building of a model. A model of a system is a
theoretical description that can help to understand how the system works, or how it might
work3. Regarding the mathematical modeling of cell dynamics, it appears that the whole
process follows the classical scheme of model-building:

1) analyze qualitatively (and sometimes quantitatively) the biological system under con-
sideration,

2) choose the level of description (cell average solely or structured population by age, size,
etc.) and the formalism (deterministic or stochastic),

3) propose a mathematical formalism to describe the phenomenon,

4) simulate and/or analyze the model (extinction times, long time behaviors, remarkable
trajectories, etc.),

5) and confront the (mathematical) model with the biological situation.

1Morphogenesis: the origin and development of morphological characteristics. (Oxford dictionnary defini-
tion)

2The study of the processes by which organisms grow and develop.
3In the words of George Box: “all models are wrong but some of them are useful” [2].
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2 Chapter I. Introduction

These steps are the common thread of the analyses carried out in this thesis.

Unlike some tissue formation mechanisms such as tumor growth, few models have been
proposed to represent the cell dynamics involved in the early development of an ovarian
follicle. We mainly rely on the model introduced in [1], where the authors use a stochastic
non-linear model structured in age (continuous variable) and space (discrete variable). Later,
a scaling limit in space of this model was studied in [3] that will be detailed in Chapter 4.
This model was the starting point for this thesis and is presented in details at the beginning of
Chapter 3. To analyze some characteristic quantities (division time, cell flow), we reformulate
this model in the framework of linear branching models (multi-type Bellman-Harris). In this
section, we describe the models dedicated to cell population dynamics at different levels of
description (cell average, structured cell average, cell based and structured cell based). We
focus in particular on models that take into account age which were used during this thesis.

I.1.1 Cell average models (used in Chapter 2 and 3)

The simplest way to describe the changes in cell dynamics is to follow the total cell num-
ber along time. The natural associated mathematical formalism is the Ordinary Differential
Equations system (ODEs), and the cell number dynamics is then described as a continuous
function of time. We introduce the main models using the finite dimension differential sys-
tem formalism to describe biological structures. We also present the modeling principles used
during this thesis to represent the cell dynamics involved in the formation of an ovarian follicle.

The best-known (and simplest) model of population dynamics is likely to be the Malthus
growth model, published in 1798 [4]. In this model, the change in speed of a growing pop-
ulation is proportional to the population size (see Table I.1). A generalized version of this
model is the Birth–Death model, where the population growth speed depends on both the
population, and time-dependent birth and death rates. The Malthus growth and Birth–Death
models belong to the linear model category in which each individual cell is independent from
the other cells. Since the ODE formalism only represents the total cell number, it may
be unnatural to think about independency between cells. This property is a direct conse-
quence of the additivity property verified by the linear ODE solution: suppose that we have
a population of N0 cells at time t = 0 following the Malthusian growth of parameter α.
We consider the trajectory of each individual in the population and thus solve N0 systems
following the Malthus law of parameter α and starting from 1 cell. Each of these systems
verifies N(t) = eαt, for all t ≥ 0. Summing those N0 systems (by additivity property of the
linear ODE solution), we obtain that the total cell number is, for all time t ≥ 0, the expected
function N(t) = N0e

αt, which is the trajectory of population following a Malthus growth and
composed initially of N0 cells.

The cell interactions are actually important mechanisms that allow the development of
a tissue. These various mechanisms are generally the result of local events: for example,
chemical factors exchanged to help develop a tissue or growth factors that are collected from
the local cell environment to facilitate the tissue development. The integration of interaction
phenomena leads to non-linear models that are often difficult to analyze or even simulate.
With regard to the ODE formalism, the cell interactions can be represented by a non-local
term consisting of nonlinear functions depending on the population size. For example, in the
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Gompertz or Verhulst models, the population grows modulated by an intrinsic growth rate
until it reaches a steady state K corresponding to the maximal capacity of the population
(see Table I.1). Another case of cell interactions is treated in Chapter 2 where we propose a
model dedicated to the ovarian follicle activation.

Model ODE formalism Parameters
Malthus m′(t) = αm(t) α: Malthus parameter

Birth–Death m′(t) = (b(t)− d(t))m(t)
b(t): birth rate,
d(t): death rate

Gompertz model m′(t) = b ln
(

K
m(t)

)
m(t)

b: intrinstic birth rate,
K: steady state

Verhulst model (logistic growth) m′(t) = r
(
1− K

m(t)

)
m(t)

r: intrinstic birth rate,
K: steady state

Table I.1 – Instancies of some cell dynamics ODE models.

One may want to represent different cell types such as proliferative versus quiescent cells.
This can be done with the compartmental models, which consist in decomposing the cell
population into subcategories representing the selected cell types that explain the whole pop-
ulation dynamics. For example, the famous Lotka–Volterra model [5, 6], that represents birth
and competition events occuring between two species, is a good example of compartmental
model with interaction phenomena. As regards to cell dynamics, the biological ODE system
models presented in [7, 8] aim to analyze the differentiation and proliferation of cells involved
in the primary immune response. In [9], a model reproducing the sequence of divisions that
a pool of progenitor cells undergoes during the neurogenesis phase is presented. In [10],
a time-dependent compartmental model is proposed to describe the cellular changes in the
somatic cells during the terminal phase of the ovarian follicle development. The model com-
partements represent the proliferative, the differentiated (exited from the cell-cycle) and the
apoptotic cells.

Once the model is built, some dynamic characteristics can be inferred from its outputs
such as the doubling time (for example, equals to ln(2)/α for the Malthus growth model ).
Another way to characterize the trajectories of the built-model is to the search for some
remarkable solutions such as the Exponentially Stable States.

a) Exponentially stable state analysis: general theory

One can look for solutions of the form t 7→ Neλt. In particular, when λ is positive and max-
imal (Malthus parameter), such solutions are called the Exponentially Stable States (ESS)
and N ∈ RN is then called the stable state vector. The ESS indicates that the overall cell
number evolves exponentially following a Malthusian growth.

Once a remarkable solution of a dynamical system has been found, it may be interesting to
investigate to what extent this trajectory is representative of the system: do all the trajectories
of the dynamical system converge towards this particular trajectory (attractive solution)? If
so, after how long? A technique based on a function called entropy has been used to measure
the difference between two solutions of a dynamical system over time. If this entropy function
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has appropriate properties, then the convergence of the two solutions towards each other can
be shown. This method is called the Generalized Relative Entropy (GRE) [11, 12]. We
introduce below some elements to understand its application to the specific case of a finite
dimensional system inspired by the work done in Section 6.3 of [12].
Suppose that the dynamics of the whole population n(t) := (nk(t))k∈J1,KK follows the ODE
system:

d

dt
n(t) = An(t), n(t = 0; θ) = n0 (I.1)

where A ∈MK(R)4 is a positive matrix, i.e. for all 1 ≤ i, j ≤ K, the element Aij of matrix A
verifies Aij > 0. We can thus apply the Perron-Frobenius theorem (see [13] for the positive
matrix case) and deduce that A has a first (maximum) eigenvalue λ > 0 associated with a
positive right eigenvector N ∈ RK , and a positive left eigenvector φ ∈ RK , such that:{

AN = λN, Ni > 0 for all i ∈ J1,KK,
φA = λφ, φi > 0 for all i ∈ J1,KK.

The eigenvalue λ, called the Perron–Frobenius eigenvalue (or sometimes the Malthus param-
eter), is simple and both right and left eigenspaces associated with λ are one-dimensional.
In addition, if

K∑
k=1

Nk =
K∑
k=1

Nkφk = 1,

then the triple (λ,N, φ) is unique.

To obtain the convergence of solutions to Eq. (I.1) towards a remarkable solution (here
t 7→ Neλt), we use a Lyapunov function, i.e. a quantity that decreases along the trajectories
of the equation being considered. For the linear system Eq. (I.1), the quantity

H[x] :=
K∑
k=1

φkNkH

(
xk
Nk

)
, (I.2)

is classically used and called the Generalized Relative Entropy. Thus, to compare the tra-
jectories solution of Eq. (I.1) to the ESS, the function x is the quantity t 7→ n(t)e−λt, which
allows a better control of the trajectory n with respect to time avoiding explosion when t
goes to +∞.

Proposition I.1 (Proposition 6.6, extract from [12]). Let λ be the first (positive) eigenvalue
associated with matrix A and H be a convex function on R, then the solution to Eq. (I.1)
satisfies

d

dt
H[n(t)e−λt] ≤ 0.

The use of the right and left eigenvectors N and φ, the convexity of function H and the
positivity of matrix A are crucial to prove that the GRE decreases with respect to time. On
the contrary, the positivity of the Malthus parameter λ is not required here to prove the GRE
decays. In Chapter 3, we will deal with a case of non-positive matrix A.
From the decay of the entropy H[n(t)e−λt] with respect to time, one can deduce that the
trajectory t 7→ n(t)e−λt approaches the right eigenvector N in a given norm. For example,
taking H(x) = x2, a convergence with square norm can then be deduced.

4MK(R) is the set of real square matrices of size K.
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Proposition I.2 (Proposition 6.5, extract from [12]). For any solution of the ODE (I.1), we
have

µ :=
K∑
k=1

φknk(t)e−λt =
K∑
k=1

φknk(0),

K∑
k=1

φk|nk(t)|e−λt ≤
K∑
k=1

φk|nk(0)|,

and there is a constant κ > 0 such that
K∑
k=1

φkNk

(
nk(t)e−λt − µNk

Nk

)2

≤
K∑
k=1

φkNk

(
nk(0)− µNk

Nk

)2
e−κt.

Thus, all the trajectories solution of the ODE (I.1) converge to the remarkable solution
t 7→ Neλt at the exponentially speed of parameter κ up to a constant µ (that depends on the
initial condition). The κ value can be estimated thanks to a discrete Poincaré inequality (see
details in Lemma 6.2 in [14]).

According to Remark 6.2 of [12], it happens that the GRE approach holds also for
M−matrices5. In the next part, we focus on the special case of nonnegative matrix, which is
a case encoutered in Chapter 3.

b) Stable state analysis: illustration of a failure case of the general theory

We present in this part an example of ODE system for which the general theory of stable
state analysis cannot be applied: suppose that a cell population dynamics is ruled by the
ODE system below

d

dt
n(t) = Cn(t), C =


b1 − d1 0 ... 0 2KI→1
K1→2 b2 − d2 ... 0 0

...
... . . . ...

...
0 0 ... bI−1 − dI−1 0
0 0 ... KI−1→I bI − dI

 ,

where n(t) = (ni(t))i∈J1,IK. Each component ni of the vector n represents the cell number in
state i (the system contains I ∈ N states). The bi ∈ R+, i ∈ J1, IK, represent the birth rates
while the di ∈ R+, i ∈ J1, IK, are the death rates. The Ki→i+1 ∈ R+ terms are the transition
rates from state i to state i+ 1.

Since matrix C may be nonnegative, the stable state analysis presented above cannot be
directly applied. Nevertheless, we can follow the general scheme and thus first turn to the
existence of a maximal eigenvalue for matrix C. The Perron-Frobenius theorem tell us that:

Theorem I.1 (The Perron–Frobenius theorem, strong form (p.82 of [15])). Let B ∈Mn(R)
be a nonnegative irreducible matrix. Then, the spectral radius ρ(B)6 is a simple eigenvalue
of B associated with positive eigenvectors. Moreover, ρ(B) > 0.

5AM−matrix is a matrix whose off-diagonal entries are nonpositive (Z−matrix) with real part eigenvalues
are nonnegative.

6We recall that the spectral radius of a matrix B is defined as ρ(B) := maxk∈J1,nK{|λk|}, where λ1, · · ·λn
are the eigenvalues of matrix B.
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We recall below the definition of a reducible matrix:

Definition I.1 (Reducible/irreducible matrix, p.30 of [15]). A square matrix A is said re-
ducible if there exists a nontrivial partition {1, · · · , n} = I ∪J such that (i, j) ∈ I×J implies
aij = 0. In other words, a matrix A is said reducible if there exists a permutation matrix P
such that PAP−1 is of block-triangular form:(

B C
0p,n−p D

)

with 1 ≥ p ≥ n− 1.
A matrix that is not reducible is called irreducible.

If bi > di and Ki→i+1 > 0 for all i ∈ J1, IK, then matrix C is a nonnegative irreducible
matrix. We can apply the Perron–Frobenius theorem and deduce that there exists a unique
maximal eigenvalue associated with positive eigenvectors. Due to the existence of some null
elements of matrix C, the proof of Proposition I.1 needs to be adapted.
If there exists i ∈ J1, IK such that Ki→i+1 = 0, then matrix C is reducible and the Perron–
Frobenius theorem cannot be applied to prove the existence of a unique maximal eigenvalue
(and its associated positive eigenvectors). We detail this situation below since it is encoutered
in Chapter 3.
We assume that I = 4 and that only K4→1 = 0 (Ki→i+1 > 0 for all i ∈ J1, 3K). The cell
number n is thus solution of

d

dt
n(t) = C̃n(t), C̃ =


b1 − d1 0 0 0
K1→2 b2 − d2 0 0

0 K2→3 b3 − d3 0
0 0 K3→4 b4 − d4

 . (I.3)

In this case, the eigenvalues can be directly read on matrix C̃ diagonal (see Eq. (I.3)): note
that the eigenvalues may be negative and the uniqueness of a maximum eigenvalue is not
guaranteed without additional information on the parameters. For some parameter values,
it may happen that the maximum eigenvalue has a multiplicity greater that one. In such a
case, one can show by direct computation that the leading order of the solution of Eq. (I.3) is
tαee

λt with α equals to the multiplicity of λ minus one. Hence, the ESS ansatz is not always
valid for Eq. (I.3).
Supposing that, for the rest of the proof, the eigenvalue λ = b3 − d3 is the only maximum
eigenvalue, we build the eigenvectorsN and φ associated with matrix C̃ (C̃N = λN and φC̃ =
λφ). The eigenvector N verifies the linear system

λ− b1 + d1 0 0 0
K1→2 λ− b2 + d2 0 0

0 K2→3 0 0
0 0 K3→4 λ− b4 + d4

N = 0.

We thus obtain

∀i ∈ {1, 2}, Ni = 0 and K3→4N3 + (λ− b4 + d4)N4 = 0.
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By using the classical normalization hypothesis for the eigenvectors (
∑4
i=1Ni = 1), we fix

uniquely N3 and N4.
On the other hand, the dual vector φ verifies

λ− b1 + d1 K1→2 0 0
0 λ− b2 + d2 K2→3 0
0 0 0 K3→4
0 0 0 λ− b4 + d4

φT = 0.

We obtain a recurrence equation for φi, i ∈ J1, 4K:{
(λ− b1 + d1)φ1 +K1→2φ2 = 0,
(λ− b2 + d2)φ2 +K2→3φ3 = 0,

and φ4 = 0.

We fix in a unique way φ using the following renormalization hypothesis:

4∑
i=1

φiNi = φ3N3 = 1.

One can consider an entropy approach to show the convergence of all trajectories n to the
(intermediate) state eλtN . Since the left and right eigenvectors are not positive, the entropy
function proposed in the usual theoretical framework (Eq. (I.2)) cannot be used in this case
and must be adapted. We tackle this issue in Chapter 3 (in the more general context of
infinite differential systems).

In this subsection, we have just seen that a first way to model and analyze a biological
system consists in selecting suitable structuring states that are markers of a biological function
(cell types) and that have a significant role in population dynamics. The result is a differential
system with a finite size of K. When K becomes very large, the analysis of the model often
becomes very complicated and finally calls for another formalism where the structuring states
are described by continuous variables.

I.1.2 Structuring physiological variables at the population level (used in Chapter
3 to 5)

Structured population models first appeared almost two hundred years after the first average
population models. The structuring state generally chosen corresponds either to a physio-
logical characteristic that changes continuously over the life of the individual (size, age, size
increment, etc.) or fixed at birth (genetic mutations). Some of those models were constructed
from the discrete differential system by applying a method named continuum limit (see for
instance [16, 17]). However, the models were built most of the time from scratch. During
this thesis, we focus on age-dependent models and therefore present a non-exhaustive state-
of-the-art of the different approaches considered in that case.

a) The McKendrick–VonFoerster and renewal equations

The age-structured models have the particularity of assuming two biological properties: the
dynamic behavior of each individual is independent of that of his or her parents and an
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individual’s ability to reproduce or die does not depend on past experience [18]. The initial
genesis of age-structured models is too complex to be described here, but the reader can refer
to [19] for a complete presentation.
We solely introduce the partial differential equation (PDE) model named as McKendrick-
VonFoerster (MK-VF) equation. First introduced by McKendrick in 1926 for demographic
studies [20], it was reintroduced almost 30 years later by Von-Foerster in a cellular biology
context without any link to the first model [21]. It is now known as the McKendrick–
VonFoerster equation [19], and consists of a non-conservative transport equation with a non-
local term at the boundary condition:

∂tρ(t, a) + ∂aρ(t, a) = −δ(a)ρ(t, a)
ρ(t, 0) =

∫+∞
0 µ(a)ρ(t, a)da,

ρ(0, a) = ρ0(a)

where δ and µ are continuous positive functions defined on R+ corresponding to the death
and birth rates, respectively. The age-structured population is represented by the density
function ρ(t, ·) ∈ L1(R+). The initial condition ρ0 is usually assumed to belong to the L1(R+)
space. Another classical assumption is often made on the death rate:

lim
a→+∞

∫ a

0
δ(s)ds = +∞. (I.4)

Hence, the probability that an individual is still alive at age a verifies exp(−
∫ a

0 δ(s)ds) and
assumption (I.4) guarantee that this individual eventually dies.
This model is a special case where the structuring variable evolves at the same speed as
time. There exist other models representing the evolution of temporal variables such as mat-
uration that do not evolve at the same speed as time (see for instance the cell maturation
models [22, 23, 24]). Interestingly, the Leslie model [25] which corresponds to an age and
time-discrete version of the MK–VF model was also proposed after the first introduction of
the MK–VF. A retrospective link between these two models is proposed in [16] where the
author uses the continuum limit to move from Leslie’s model to the MK–VF model.

The MK–VF model is mainly a demographic model. In this thesis, we focus on its “cell
model” counterpart known as the renewal equation. The renewal equation is a special case
of the MK–VF where the death rate is linked to the birth rate:

∂tρ(t, a) + ∂aρ(t, a) = −b(a)ρ(t, a),
ρ(t, 0) = 2

∫+∞
0 b(a)ρ(t, a)da,

ρ(0, a) = ρ0(a),
(I.5)

where both ρ0 and ρ(t, ·) belongs to the L1(R+) space. The function b is supposed to be
positive and represents the division rate. It usually belongs to the C(R+) space (the set of
continuous functions) but we also consider the case of non-negative functions belonging to
the space Cc(R+) (the set of continuous compactly supported functions) in Chapter 5. In the
same way as the MK–VF, the probability that an individual has not divided at age a verifies

P [τ ≥ a] = exp
(
−
∫ a

0
b(s)ds

)
.
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If one wants to model a population in which all cells eventually divide (non quiescent cells),
the following hypothesis is necessary

lim
a→+∞

∫ a

0
b(s)ds = +∞. (I.6)

Both the MK–VF and the renewal equation have been extensively studied and modified
since their introduction. Regarding the theoretical studies, general results based on operator
theory can be found in [26, 18]; [19, 27] provide analytical solutions using the method of
characteristics. In the case of the renewal equation, this representation formula has the form

ρ(t, a) =
{
ρ0(a− t) exp

(
−
∫ a
a−t b(s)ds

)
when a ≥ t

ρ(t− a, 0) exp (−
∫ a

0 b(s)ds) when a ≤ t.
(I.7)

(see the details of the proof in Chapter 5). Note that this formula still depends on the ρ func-
tion. However, this particular shape helps to design a numerical scheme [28]. Other methods
are also available: escalator boxcar train (see for instance [29, 30]), finite-difference method
(see for instance [31, 32]) and finite-volume method [33], presented in Chapter 3. A review
of the main numerical schemes available for the age-structured equations can be found in [32].

More recently, studies have been done on measure solutions. They consider measure ini-
tial conditions such as Dirac mass instead of the classical L1 function. Such conditions allow
to consider synchronized initial conditions and will be more widely discussed in Chapter 5.
In [34, 35, 36, 37], the authors study the existence and uniqueness of such solutions while
numerical approaches are proposed in [38, 39].

b) The Lotka integral equation

Even before the first appearance of the age-structured PDE model, Sharpe and Lotka intro-
duced in 1911 a model dedicated to the age distribution of a population [40]. Their aim was to
represent the age fluctuation based on demographic observations: “certain age-distributions
will practically never occur” [40]. This model links the number of births per unit time B to
the fraction l of individuals surviving to age a :

B(t) =
∫ t

0
B(t− a)l(a)b(a)da.

The function b is the birth rate per capita for mother of age a. Based on the other observation
that “there must be a limiting stable type about which the actual distribution varies, and
towards which it tends to return if through any agency disturbed therefrom”, they assume
an exponential solution B(t) = Qert and deduce the Fredholm integral equation, called the
characteristic equation [41], ∫ t

0
e−ral(a)b(a)da = 1.

Sharpe and Lotka laid the foundations for the well-known result of the convergence of all the
trajectories to an exponential stable state, but did not provide any clues for the proof. The
proof of this result was ultimately demonstrated in 1941 by Feller [42] and calls for tools be-
longing to the renewal theory approach. Another proof based on group theory was proposed
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later in [41].

The true “renewal equation” term refers to the integral equation of the form

u(t) = g(t) +
∫ t

0
u(t− x)f(x)ds. (I.8)

Eq. (I.8) is a linear Volterra equation of the second kind where f is sometimes called the
kernel and g is a source term. This type of equation appears under different forms mainly in
population theory, the theory of industrial replacement and self-renewing aggregates, and are
usually analyzed and solved by Laplace transform techniques. The term renewal equation
used above and referring to a MK–FV like equation is thus a little abusive although the two
models are the same. A way to pass from the MK–FV equation to the Lotka integral can
be found p.148 of [18]. It consists in injecting the representation formula obtained with the
method of characteristics (Eq. (I.7)) into the boundary condition of PDE (I.5):

ρ(t, 0) = 2
∫ +∞

t
b(a)ρ0(a− t) exp

(
−
∫ a

a−t
b(s)ds

)
da︸ ︷︷ ︸

source term

+ 2
∫ t

0
ρ(t− a, 0) b(a) exp

(
−
∫ a

0
b(s)ds

)
︸ ︷︷ ︸

kernel

da (I.9)

In Chapter 5, we apply the same method to pass from a multi-type MK–FV like equation
to the integral equation.

c) Stable state analysis

Again, one way to analyze the differential system is to look for remarkable solutions and then
see if these particular solutions are attractive (i.e. any trajectory converges towards these
solutions in long time). The range of remarkable solutions usually studied for differential
systems of infinite dimension are the solutions with separable variables, and the renewal
equation (I.5) does not deviate from the rule. We are therefore interested in the stationary
age profile, anticipated by Sharpe and Lotka, (t, a) 7→ ρ̂(a)eλt: the stationary age profile is
multiplied by exponential growth. One can obtain the well-known eigenvalue problem by
injecting such a solution in Eq. (I.5):

d

da
ρ̂(a) = −(b(a) + λ)ρ̂(a),

ρ̂(0) = 2
∫ +∞

0
b(a)ρ̂(a)da.

(I.10)

This non-local differential equation is easily solved by hand: for all a ≥ 0,

ρ̂(a) = ρ̂(0) exp
(
−
∫ a

0
(λ+ b(s))ds

)
. (I.11)

The solution of Eq. (I.10) is expected to belong to the L1(R+) space. A common assumption
for that is that Eq. (I.6) is verified.
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To analyze the convergence of the trajectories towards the stationary age profile, a gener-
alized entropy method can again be used (see previous sub-section). Again, the dual problem
will be necessary for building a weighted–L1 set in which convergence will be shown. We
briefly recall here how to build such a problem. Let L the operator associated with Eq. (I.5)
by: for any function ρ(t, ·) solution of Eq. (I.5), ∂tρ(t, ·) = Lρ(t, ·). The dual operator LD is
then defined as: for any test function φ ∈ Cc (R+),

< Lρ(t, ·), φ >=< ρ(t, ·),LDφ > .7

Hence, we deduce from Eq. (I.5) that for any φ ∈ Cc (R+),∫ +∞

0
(Lρ(t, a))φ(a)da = −

∫ +∞

0
∂aρ(t, a)φ(a)da−

∫ +∞

0
b(a)ρ(t, a)φ(a)da.

Applying an integration by part and using the boundary condition of Eq. (I.5), we deduce
that ∫ +∞

0
(Lρ(t, a))φ(a)da =

∫ +∞

0
ρ(t, a) [∂a + (2φ(0)− 1)b(a)]φ(a)da

and conclude that LD = ∂a+(2φ(0)−1)b(·). The dual problem associated with the trajectory
ρ̄(t, a) 7→ ρ̂(a)eλt therefore verifies

< ρ̄(t, ·),LDφ >= λ < ρ̄(t, ·), φ >=< Lρ̄(t, ·), φ > .

The dual problem associated with the stationary problem (I.10) is thus defined as:

d

da
φ(a)− (λ+ b(a))φ(a) = −2φ(0)b(a). (I.12)

The uniqueness of the triplet (λ, ρ̂, φ) in the continuous case is shown by a direct proof:

Theorem I.2 ( Theorem extract from [43]). Assume that b is a continuous non-negative
function on R+ verifiying Eq. (I.6). Then, there exists a unique triplet (λ, ρ̂, φ) solution of
the problems (I.10)-(I.12) such that∫ +∞

0
ρ̂(a)da =

∫ +∞

0
ρ̂(a)φ(a)da = 1.

In addition, both the eigenvalue λ and the eigenfunctions ρ̂ and φ are positive.

Proof. The condition
∫+∞
0 ρ̂(a)da = 1 ensures that ρ̂(0) 6= 0. Hence, injecting Eq. (I.11) in

the boundary condition of the eigenproblem, we deduce the characteristic equation

f(λ) := 2
∫ +∞

0
b(a) exp

(
−
∫ a

0
(λ+ b(s)ds)

)
da = 1. (I.13)

Since f is a stricly decreasing function satisfying f(0) = 2 and lim
λ→+∞

f(λ) = 0 (using the
dominated convergence theorem), we obtain the uniqueness of the solution of f(λ) = 1
from the intermediate value theorem. It gives that ρ̂ is unique thanks to the normalization
condition

∫+∞
0 ρ̂(a)da = 1. In addition, the solution of the dual problem (I.12) is classically

φ(a) = 2φ(0)
∫ +∞

0
b(s) exp(−

∫ u

s
(λ+ b(u)du))ds.

The uniqueness is deduced from the normalization condition
∫+∞

0 ρ̂(a)φ(a)da = 1.
7 The scalar product < ·, · > is the L1–scalar product defined as < f, g >=

∫
f(a)g(a)da.
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Note that Eq. (I.6) is a sufficient but not necessary assumption to obtain the existence of
a positive eigenvalue λ. Indeed, if after a given age Amax ∈ R+ cells do not divide, then we
have

f(0) = 2
[
1− exp

(
−
∫ Amax

0
b(s)ds

)]
,

that could be less than 1. In that case, there exist no positive eigenvalue λ that verifies
Eq. (I.13).

The renewal equation is one of the few examples of structured equations where a construc-
tive method is applied to prove the existence and uniqueness of the triplet of eigenelements.
In more complex cases such as ones involving either integro-differential equations (e.g. size
equations [44] or for a review on the subject [12, 11]) or periodic PDEs (e.g. cell cycle [45]),
the Krein–Rutman theorem is applied to obtain the same type of results. In these cases,
explicit solutions are unknown and thus numerical solutions are constructed by the iterated
power method (see [17, 46]).

Using the entropy function, similar to the entropy function (I.2) used in the finite dimen-
sion case, defined as, for n ∈ L1(R+) and a convex function H defined on R+

H[n] :=
∫ +∞

0
φ(a)ρ̂(a)H

(
n(a)
ρ̂(a)

)
da,

one can deduce the exponential convergence:

Theorem I.3 (see [43]). Suppose that there exists κ such that for all a ≥ 0, 2b(a) ≥ κφ(a)
φ(0) ,

then all the solutions of Eq. (I.5) satisfy

∫ +∞

0
|ρ(t, a)e−λt − µρ̂(a)|φ(a)da ≤ e−κt

∫ +∞

0
|ρ0(a)− µρ̂(a)|φ(a)da

where µ :=
∫+∞

0 φ(a)ρ0(a)da.

In this subsection, we have just seen how the level of description of a model dedicated
to cell dynamics can be increased by including continuous structuring variables such as age.
More and more models tend to combine several structuring variables together to explain
cell dynamic behaviors, see for instance [47, 12, 48, 18]. A next natural step is to wonder
whether the cell variability observed is important, or not, to describe the cell population
dynamics. To that end, some people have enriched the deterministic models by representing
the difference existing between cells with statistical approaches such as Non-Linear Mixed
Effect models. These models aim to estimate the cell-specific parameters for each individual
following a same behavioral law (see for instance [49, 50]). For others, part of the observed
variability comes from our current inability to capture the full range of behaviors of each
individual in a population and make it totally predictable. This part of variability, of lack of
certainty about individual trajectories, is the motivation for stochastic models (see [51] p.2:
Why is stochastic modelling necessary?). In particular, stochastic models allow to represent
the dynamics of small size population where the uncertainty on each individual trajectory
cannot be hidden by the whole population.
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I.1.3 Cell-based level (used in Chapter 2)
We go back to our common thread: modeling and analyzing the cell number changes tak-
ing into account this time the incompleteness of our knowledge about the individual cell
behaviors. Starting simple and assuming that our cell population is only dividing (pure
birth process), we deduce that the total cell number at each division increases by +1, which
makes us naturally introduce the building blocks of most of stochastics models: the counting
processes.

Definition I.2 (Counting process, according to Definition 1.1 of [52]). The process N(t) is
a counting process if N(0) = 0 and N is constant except for jumps of size +1.

A counting process, as its name suggests, therefore counts the number of events (positive
jumps) taking place during a given time interval. To clarify how these jumps occur, Defini-
tion I.2 may be supplemented as follows to correspond to the homogeneous Poisson process
definition:

Definition I.3 (Homogeneous Poisson process, according to Definition 1.2 of [52]). A count-
ing process is a Poisson process if it satisfies the following conditions:

1. let tk, k = 0, . . . ,m be a time sequence, then the increments N(tk) − N(tk−1), for all
k = 1, . . . ,m are independent random variables.

2. for all s ≥ 0, N(t+ s)−N(t) does not depend on t.

Two fundamental properties of Poisson processes that are the starting point for many
analyses and algorithms can be derived from this definition.

1) the number of events during a time interval [t, s] follows a Poisson law of parameter
λ: P [N(s)−N(t) = k] = (λ(s−t))k

k! e−λ(s−t) (see the proof of Theorem 1.3 of [52] for
details).

2) the time jump law follows an exponential law E (λ) of parameter λ: for all k ∈ N∗, let
Sk be the time of the kth event, that is, the kth jump of N . We fix S0 = 0 and then
define the kth jump time Tk := Sk − Sk−1, for all k ∈ N∗. Then, Tk ∼ E (λ).8

A Poisson process of intensity λ verifies Nt = Y(λt), where Y is a unit Poisson process. Prop-
erty 1) fully characterizes the cell number Nt (e.g., the mean and variance cell number are
equal to λt) while property 2) fully characterizes the time sequence (Sk ∼ Γ(k, λ)). It should
be noted that this first model involves a linear growth of cells, very far from the Malthusian
model introduced previously, and allows the spontaneous generation!

The Poisson process can be improved in two ways: either by changing the time scale (i.e.,
the law of jump times) or the jump scale. With regard to cell dynamics, it is more natural
to first try to modulate the time sequence Sk since the jumps size corresponds exactly to one
division9. The leverage point for varying the sequence of jump times is the intensity of the

8The Tk law can be easily deduced from the law of the event number:

P [Tk ≤ t] = 1− P [Tk > t] = 1− P
[
NTk −NTk−1 = 0

]
= 1− e−λt.

9The jump size modulation leads to some well-known process such as the Brownian process.
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Poisson process, that may depends at time t on the behavior of the counting process prior to
time t or other stochastic inputs, usually the external noise or the environment, represented
here by the stochastic process Z. For measurability issues, Z is assumed to be càdlàg10. Let
E ⊂ Nd a state space, DE [0,∞) the space of càdlàg and Dc[0,∞) the space of counting paths
(zero at time zero and constant except for jumps +1). The intensity λ is required to satisfy
the following condition (see Condition 1.9 of [52]):

λ : [0,+∞)×DE [0,+∞)×Dc[0,+∞)→ [0,+∞)

is measurable, nonanticipating and
∫ t

0 λ(s, z, v)ds < ∞ for all t ≥ 0, z ∈ DE [0,+∞) and
v ∈ Dc[0,+∞). We thus obtain the Poisson process of intensity λ

Nt = Y
(∫ t

0
λ(s, Zs, Ns)ds

)
.

By drawing an analogy between the jump intensity and the event occurrence speed, we
naturally come to propose a cell division model where the intensity is proportional to the
population size (see Malthus’ model presented in section I.1.1): λ(s, Z,N) = λN , resulting
in Nt = Y

(∫ t
0 λNsds

)
.

To finish with this round of modeling cell dynamics with Poisson processes, as with differential
systems, we may want to build stochastic models that take into account several cellular mech-
anisms (division, death, transition) and/or cellular types (quiescent, proliferative, precursor,
etc.). Such models can be designed by combining different counting processes modulated
by different intensities. The whole cell number X = (Xt)t≥0 consists then of a vector of m
processes (Xt = (Xm

t )m∈J1,MK) corresponding to a given cell property (type), and process X
follows a Stochastic Differential Equation (SDE):

Xt = X0 +
M∑
m=1

ξmYm
(∫ t

0
λm(Xs)ds

)
, (I.14)

whereM is the total number of cell mechanisms (events), Ym areM independent unit Poisson
processes. Each cell event is represented by a vector ξm corresponding to the jump size (e.g.,
+1 for a division, -1 for a death, etc.) and an intensity λm corresponding to the speed of the
mechanism. An example can be found in Chapter 2.

One way to analyze such processes is to use a characterization by another type of process,
the martingales, defined as follows

Definition I.4 (Martingale definition, p.71 of [52]). An R-valued stochastic process M
adapted to a filtration {Ft}11 is an {Ft}-martingale if

1) for all t ≥ 0, E [|Mt|] <∞,

2) for all t, r ≥ 0, E [Mt+r|Ft] = Mt or equivalently, E [Mt+r −Mt|Ft] = 0.

The link between a martingale and the homogeneous Poisson process was first introduced
by Watanabe in 1964:

10i.e., Z is right continuous with left limits at all t > 0.
11A filtration {Ft} is a representation of the information available about the process from the beginning up

to a time t ≥ 0. The reader can find more details about it p.71 in [52].
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Theorem I.4 (Watanabe theorem, see Theorem 2.3 of [53]). If N is a Poisson process with
parameter λ, then Nt−λt is a martingale. Conversely, if N is a counting process and Nt−λt
is a martingale, then N is a Poisson process with parameter λ.

This link was then extended by Brémaud [54] to more complex processes (see SDE I.14
for instance). We quickly give (some) details about the procedure to adopt in the case where
X is defined as a solution to an SDE (here SDE I.14). The first step consists in writing the
infinitesimal generator A associated with the process, defined as, for all x ∈ S, where S ⊂ Nm
is the state set,

Af(x) =
M∑
m=1

λm(x) (f(x+ ξm)− f(x)) , (I.15)

for all bounded functions f . This operator fully characterizes the process. Under the as-
sumption of sufficient regularity of the operator

Hypothesis I.1. Assuming that, for all m ∈ J1,MK,

• λm(x) ≥ 0, for all x ∈ S. (positive intensity)

• ξm ∈ Rd such that x ∈ S and λm(x) > 0 implies x+ ξm ∈ S. (additivity property)

• x ∈ S,
∑M
m=1 λm(x) <∞ (finite jump intensity)

• For f with finite support in S and A defined by Eq. (I.15), lim
|x|→+∞

Af(x) = 0.

we get the martingale problem:

Definition I.5 (Martingale problem and minimal solution, see [52] p. 12). A right continuous
S ∪ {∞}–valued stochastic process X is a solution of the martingale problem below for the
operator A if there exists a filtration {Ft} such that for each f with finite support,

f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds

is a {Ft}–martingale.
Let τK := inf{t : |Xt| ≥ K} be a sequence of stopping times of process X and τ∞ :=

lim
K→+∞

τK . If τ∞ is finite with positive probability, then there may be more than one solution
the martingale problem. If in addition to the martingale requirements, we require that Xt =∞
for t ≥ τ∞, then we say that X is a minimal solution of the martingale problem.

There is a close link between the martingale problem and the SDE solution:

Theorem I.5 (Theorem 1.22 of [52]). Under Hypothesis I.1, the solution of SDE (I.14) with
Xt = +∞ for all t ≥ τ∞ is the unique minimal solution of the martingale problem for A.

a) Link with the continuous time Markov chains

In the same way that Poisson processes are special cases of counting processes, they are also
examples of continuous Markov chains.
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Definition I.6 (Continuous-time Markov chains, Definition 2.1, chapter 8 of [54]). The R-
valued stochastic process {Xt}t≥0 is called a continuous-time Markov chain if for all states
i, j, i1, . . . ik ∈ S, all times t, s ≥ 0 and all time-points s1, . . . , sk ≥ 0 such that sl ≤ s for all
l ∈ J1, kK,

P [X(t+ s) = j|X(s) = i,X(s1) = i1, . . . , X(sk) = ik] = P [X(t+ s) = j|X(s) = i] ,

whenever both sides are well-defined.

A continuous-time Markov chain is fully characterized by its associated transition semi-
group12 P given by, for all s ≥ 0,

P (t) = {pij(t)}i,j∈S where pij(t) = P [X(t+ s) = j|X(s) = i] .

In the case of a homogeneous continuous-time Markov chain, the chain is in particular char-
acterized by a time-independent operator: its infinitesimal generator Q := {qi,j}i,j∈S , where
qi,j are the local characteristics of the semigroup P (see Definition 2.3, p.335 of [54]). The
matrix Q is thus sometimes defined as

Q := lim
h↘0

P (h)− P (0)
h

.

The process is then connected with the Kolmogorov equations:

• the backward Kolmogorov equation P ′(t) = QP (t).

• the forward Kolmogorov equation P ′(t) = P (t)Q.

The backward Kolmogorov equation is classically used when the final condition is known (an
extinction for example) while the forward equation is preferred when the initial condition is
known. When they can be solved analytically, these equations give access to the analytical
expression of the law of the whole process at any time.

The birth and death process.
The pure birth and death process is a pure13 jump Markov process whose jump steps are
equal to ±1 and the transition rates are defined as follows: for all i ∈ N,{

i→ i+ 1 at rate λi,
i→ i− 1 at rate µi,

where (λi)i∈N∗ and (µi)i∈N∗ are two sequences of positive real numbers such that λ0 = µ0 = 0
[55]. The birth and death process consists thus of jumps of size +1 (birth) at random times
that follow the exponential law E(λi) and jumps of size −1(death) at random times that
follow the exponential law E(µi), where i is the current population size [56, 57, 55]. Although
we have mainly used the Yule process that corresponds to the case where λi = iλ and µi = 0
in this thesis, we present some general results in the following.

12For example, the transition semi-group of a Poisson process of intensity λ is pij(t) = e−λt (λt)j−i

(j−i)! .
13The term “pure” means that there is neither drift or diffusion part in the process.
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To obtain the law of the transition semi-group P , we start by writing the infinitesimal
generator Q. For this step, we write the probabilities P [X(t+ h) = j|X(t) = i] over a very
small time interval h based on the behavioral law of our model. As far as the birth, we have

P [ jump +1 during a time interval of length h |X(t) = i] = 1− e−λih ≈ λih+ o(h).

Symmetrically, the probability of having a death within a small time interval h corresponds
to a −1 jump in the process (with an exponential random law time E(µi)):

P [ jump -1 during a time interval of length h |X(t) = i] = 1− e−µih ≈ µih+ o(h).

Assuming that the probability of having more than one event (birth or death) in a h time
interval is very low (in the order of o(h)), one can write, for any t ≥ 0,

P [X(t+ h) = i+ 1|X(t) = i] = λih+ o(h), P [X(t+ h) = i− 1|X(t) = i] = µih+ o(h)
and P [X(t+ h) = i|X(t) = i] = 1− (λi + µi)h+ o(h).

By the Markov property, we can take t = 0 and deduce the infinitesimal generator Q =
(qi,j)i,j∈N applying Definition a): for all i ≥ 0,

qi,i−1 = µi, qi,i+1 = λi, qi,i = −(λi + µi) and qi,j = 0 otherwise.

We deduce the Kolmogorov forward equation for the birth-and-death process (see p.10 of
[55]): for all i, j ∈ N,

d

dt
pi,j(t) = µj+1pi,j+1(t) + λj−1pi,j−1(t)− (λj + µj)pi,j(t)

and the Kolmogorov backward equation

d

dt
pi,j(t) = µipi−1,j(t) + λipi+1,j(t)− (λi + µi)pi,j(t).

From these equations, we can deduce an equation verified by the probability measure π
defined, for all j ∈ N, by

πj(t) := P [Xt = j] =
∑
i

P [Xt = j|X0 = i]P [X0 = i] =
∑
i

P [X0 = i] pi,j(t).

We thus deduce the forward Kolmogorov equation

d

dt
πj(t) = µj+1πj+1(t) + λj−1πj−1(t)− (λj + µj)πj(t). (I.16)

A classic first analysis then consists in looking at the stationary state of the process, i.e.
looking for a vector π̄ such as µj+1π̄j+1 + λj−1π̄j−1 − (λj + µj)π̄j = 0.
In some cases, the stationary state does not exist: the process may explode for instance.
Another analysis then focuses on the extinction time T0 (no more cells in the system). The
probability to see an extinction in a finite time starting from i cells, is defined as wi =
P [T0 <∞|X0 = i] and verifies the equation λiwi+1−(λi+µi)wi+µiwi−1 = 0 (that is deduced
from the backward Kolmogorov equation, see p.11 of [55] for details ). The extinction (or
not) of the process almost surely in finite time is a well-known result and depends on the
convergence of the series

∑
k≥1

µ1···µk
λ1···λk (see Theorem 2.5 of [55] for details). As far as the
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binary branching process (linear birth and death rates: µi = µi and λi = λi), this results is:
if λ < µ, then the probability of extinction in finite time ω verifies

ωj = λj

µj
(
1 +

∑∞
n=1(λµ)n

) .
The condition λ < µ implies that death dominates reproduction so that the number of indi-
viduals does not diverge at long times.

In special cases, the Kolmogorov equation (I.16) can be solved. For example, one can
show that the law of cell numbers of a Yule process, starting from n0 cells at time t = 0,
follows a binomial negative law of parameter p = eλt and n = n0 by solving the Kolmogorov
forward equation. Additional examples are provided in Table I.2.

Kolmogorov forward equ. Xt law
Homogeneous Birth

(λi = λ \ µi = 0)
π′i(t) = λ [πi−1 − πi(t)]

π1(0) = 1
πn(t) = e−λt (λt)n

n!
(Xt follows a Poisson law P(λt))

Yule process
(λi = iλ \ µi = 0)

π′i(t) = λ [(i− 1)πi−1 − iπi(t)]
π1(0) = 1

πn(t) = e−λt(1− e−λt)n−1

(Xt follows a Geometric law G(eλt)
with support in N∗)

Pure Birth
(λi = iλ \ µi = 0)

π′i(t) = λ [(i− 1)πi−1 − iπi(t)]
πn0(0) = 1

πn(t) =
(
n− 1
n0 − 1

)
e−λn0t(1− e−λt)n−n0

(Xt follows a Binomial negative law
BN (n0, e

λt))

Pure Death
(λi = 0 \ µi = µi)

π′i(t) = µ [(i+ 1)πi+1 − iπi(t)]
πn0(0) = 1

πn(t) =
(
n

n0

)
e−µnt(1− e−µt)n0−n

(Xt follows a Binomial law B(n0, e
−µt))

Table I.2 – Birth and Death process laws. We consider different examples of the
Kolmogorov forward equation (I.16), starting either with one cell (π1(0) = 1) or several
(πn0(0) = 1).

However, it happens generally that the Kolmogorov (forward or backward) equation can-
not be solved (unclosed system). For example, in the case of Eq. (I.16), the probability πj
(state j) is deduced from the probabilities πj+1 (state j+ 1) and πj−1 (state j− 1). Without
absorbing states or frontiers14, the state j + 1 is always required to compute the state j,
for all j ∈ N. Sometimes, the situation (studied) makes it possible to naturally introduce
absorbing states, but this is quite rare! A domain closure method was developed about fifteen
years ago to solve Kolmogorov’s equations: the finite state projection. The validity of the
finite state projection has already been proven in [58] and subsequent work. More recently,
Thomas Kuntz’s thesis work has tackled the characterization of a Markov chain exit from a
domain (absorbing frontier) [59, 60]. This approach is detailed in Chapter 2 where we develop
a rigorous method based on it to simulate hitting times (specifically, extinction times).

14A state i is absorbing if for all states j 6= i, πi,j(t) = 0. An absorbing frontier is a connected set of
absorbing states.
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b) Simulation of the Poisson process

There are two main categories of algorithms for simulating Poisson processes:

• algorithms based on the Markov chain definition of the Poisson process. The most
famous algorithm in this category is the Gillespie algorithm [61], which we introduce
below and is used for the simulations in Chapter 2.

• algorithms based on the jump process definition (see for instance the next reaction
method, p.59 [52]).

A detailed presentation of these algorithms can be found in Chapter 5 of [52].

The Gillespie algorithm [61], sometimes called Stochastic Simulation Algorithm (SSA), is
a direct method that takes advantage of the Markov chain property satisfied by the Poisson
process. Using the decomposition of the Poisson process X = (Xt)t≥0 as the couple of
processes (Sn, Xn) where Sn is the sequence of jump times of the process (see Definition I.3)
and Xn is the embedded Markov chain associated with process X15, the Gillespie algorithm
proceeds by simulating the embedded Markov chain concurrently with the sequence of time
jumps Sn. The embedded Markov chain, similar to a discrete time Markov chain, is simulated
with the transition probabilities

pxy =


λk(x)∑
l λl(x) , if y = x+ ξl,

0, else.

For example, starting from an initial cell population vector N0, the next state ỹ of the chain
is simulated with the transition probabilities (pN0y)y∈S . The next jumptime is obtained by
simulating an exponential random variable with parameter

∑
l λl(x) (exponential law prop-

erty16).

When event rates (division, transformation, etc.) are linear, there is another way to
simulate the process taking advantage of the branching property induced by the linear rate.
Such an algorithm was used during this thesis (see detailed Algorithm 3 in Appendix A.1).

c) The branching property

The basic assumption involved is that each cell in the process behaves identically and inde-
pendently from the other cells (see 1.3 of [62]). A branching process representing the cell
division can be described as follows (for more general results, see Chapter 4 of [63], Chapter
2 of [64] or Chapter 5 of [65]). A single ancestor cell is born at time t = 0 and does not divide
until a random time τ , which is exponentially distributed with parameter b. At division, the
cell divides into two daughter cells that behave independently from each other and in the
same way as the ancestor cell. Hence, the two daughter cells of the first generation divide
at a random exponentially distributed time with parameter b. Mathematically, this can be
written as: let Zt be the cell number at time t starting from one cell at time t = 0:

Zt =
{

1, t < τ,

Z
(1)
t−τ + Z

(2)
t−τ , t ≥ τ,

(I.17)

15which can also be seen as the state chain of the process X.
16mini∈J1,IK E(λi) = E

(∑I

i=1 λi
)
.
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where Z(1) and Z(2) are identical and independent distributed (iid) copies of process Z.
Hence, taking any cell from either process Z(1) or Z(2) gives rise to its own clones, which is a
subprocess of the whole process {Zt, t ≥ 0}. Mathematically speaking, branching processes
belong to a class of stochastic objects called “self-recurrent”, introduced by Feller. Matters
become a little more complicated if we allow particles of different types. The clones created
by cells of different types are different, so the bookkeeping becomes more involved. However,
the principle stays the same (see Chapter 3).

Generating function of the process The tool dedicated to the study of processes
verifying the branching property is the generating function.
Let s ∈ [0, 1]. Following [66], we define the generating function F [s; t] associated with our
stochastic process defined by Eq. (I.17):

F [s; t] := E
[
sZt |Z0 = 1

]
=
∑
k∈N

skP [Zt = k|Z0 = 1] . (I.18)

The renewal equation verified by the generating function F is obtained by writting first a
renewal equation for the probability P [Zt = k|Z0 = 1]. In the same way as the Kolmogorov
equations, this equation is obtained by writing the events occurring from the initial time
t = 0 up to time t: i) no division has occurred at time t, ii) a division has taken place before
time t:

P [Zt = k|Z0 = 1] = δk,1P [τ ≥ t] +
∫ t

0
P [Zt−y = k|Z0 = 1] f(y)dy,

where f is the density function of the exponential law: f(t) = be−bt. After a few calculation
steps (see details in Appendix A.1.3), we deduce a renewal equation for F :

F [s; t] = se−bt +
∫ t

0
F [s; t− y]2be−bydy.

Differentiating this expression with respect to time, we obtain that

∂tF [s; t] = −b
[
F [s; t]− F [s; t]2

]
,

which is a Riccati equation whose solution is known in that case:

Theorem I.6 (Solution of a Riccati equation, see Theorem 4.2 of [63]). The solution of the
differential equation

d

dt
F (t) = f(t)F (t) + hF (t)2,

where f ∈ C0([0,+∞)) and h ∈ R, with initial condition F (0), is the uniquely defined function
F ∈ C1([0,+∞)):

F (t) = F (0)e
∫ t

0 f(u)du

1− hF (0)
∫ t

0 e
∫ u

0 f(s)dsdu
.

Applying Theorem I.6, we deduce that for all s ∈ [0, 1], F [s; t] = s
s+(1−s)ebt , which cor-

responds to the generating function of the geometric law G(ebt), consistent with the Table
results I.2.
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Decomposable branching process. In this thesis, we have focused on a rather par-
ticular category of processes: the decomposable processes (see Chapter 3). In this type of
process, a population is decomposed into a countable number of J ∈ N categories. Immedi-
ately after the division of a mother-cell from category j (at a category-dependent rate), the
two new-born daughter cells change from their mother’s category to another one according to
given probabilities (mutation, immigration, etc.). The specificity of decomposable processes
comes from the fact that daughter cells can only “choose” their categories from a subset of
J1, JK: Jj, JK. The decomposable processes have been particularly studied by Vatutin and
Sagitov, see for example [67, 68, 69, 70]. In these studies, the authors are mainly interested in
Galton-Watson-type processes17 modeling immigration phenomena between several islands,
sometimes integrating environmental effects on the migration probabilities. In Chapter 3, we
analyze age-dependent branching processes.

I.1.4 Structuring physiological variables at the individual level (used in Chap-
ter 3)

The integration of structuring physiological variables at the individual level has been the
subject of much research since the middle of the 20th century. Concerning models dedicated
to cell dynamics, two categories of techniques stand out: the moment-generating functions
and the Poisson point measure.

a) The moment-generating functions

One of the first models that incorporates a structuring variable at the individual level is the
Bellman-Harris model, which emerged from the collaboration between Theodore E. Harris
and Richard Bellman [71, 72]. Introduced in [71], this model focuses on the dynamics of
cell number18 at time t ≥ 0. At a random time τ given by the G distribution function
(G(t) := P [τ ≤ t]), a cell is transformed into n cells (in the case of a division, n = 2). It is
assumed that G is a cumulative distribution for which G(0) = 0 and G(+∞) = 1. Using an
approach based on generating functions, the authors derive a renewal equation verified by
the generating function F [s; t] defined in (I.18). Analyses are then carried out, including one
on asymptotic behavior using Feller’s work [42] on renewal equations. This model was later
extended by Charles Mode [73, 74] and Kenny S. Crump [75, 76] to multi-type populations,
a detailed version of which is provided in Chapter 3.
Using the same definition as Markov branching processes, we introduce Zt the cell number
at time t, starting with one cell at time t = 0:

Zt =
{

1, t < τ,

Z
(1)
t−τ + Z

(2)
t−τ , t ≥ τ,

(I.19)

where τ follows an G distributed law and Z(1) and Z(2) are iid, identical to process Z. Using
the generating function (see details in Chapter 3), one can deduce a renewal equation for the
mean cell number:

Theorem I.7 (Expectation, Chapter VI, section 15 of [65]). Let G be a probability dis-
tribution for which G(0) = 0 and G is continuous on the right. Then, the expectation

17In discrete Markov processes, the events take place at discrete times n ∈ N.
18The authors use the term“particles” in the article, since the model was designed for a more general context

(biology, physics or chemistry).
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M(t) := E[Zt] defined in Eq. (I.19) satistifies the renewal equation

M(t) = 1−G(t) + 2
∫ t

0
M(t− u)dG(u), (I.20)

where dG is the density function associated with the probability distribution G. M is bounded
on each finite t-interval and is the only solution of Eq.(I.20) having this property.

Note that the renewal equation Eq.(I.20) is the same as the Lotka equation (Eq. (I.9))
deduced from the MK–VF equation in the special case of cell division. Using a Laplace
transform method, one can determine from Eq.(I.20) the Laplace transform of M :

M∗(s) :=
∫ +∞

0
e−stM(t)dt = 1−

∫+∞
0 e−stdG(t)

s
[
1− 2

∫+∞
0 e−stdG(t)

]
for all s ∈ R such that M∗ exists. In most cases, the Laplace transform of M∗ cannot
explicitly be inversed and M can be calculated only by numerical or series methods [65]. In
constrast, the asymptotic behavior of M(t) when t goes to +∞ can be determined in most
cases by applying results on the integral equation thanks to renewal theory. For example, if
G has good properties such as not being lattice:

Definition I.7 (Lattice distribution definition, Definition 17.1 of [65]). A distribution G is
a ∆-lattice distribution if it is constant excepts for jumps that are located at positive integer
multiples of some positive number ∆, and if ∆ is the largest such number.

Theorem I.8 (Asymptotic behavior ofM , extract from Theorem 17.1 [65].). Let λ be defined
as the positive root of

2
∫ +∞

0
e−λtdG(t) = 1. (I.21)

If G is not a lattice distribution then

M(t) ∼ n1e
λt, t→ +∞,

where n1 = 1
4λ
∫ +∞

0 te−λtdG(t)
.

Note that the constant λ, sometimes called the Malthus parameter, is solution of the
characteristic equation Eq. (I.13) met earlier. Note that the existence of a positive root of
Eq. (I.21) can be deduced with the same arguments as the ones provided for Eq. (I.13).

One may also want to analyze the age distribution of the branching process (I.19). One
way for that consists in studying the random variable Z(t, a) corresponding to the number
of cells at time t of age ≤ a. Using again generating functions (see Chapter 3 or section 21.1
of [65]), one can show that M(t, a) = E [Z(t, a)] follows the renewal equation

M(a, t) = [1−G(t)]1[0,a](t) + 2
∫ t

0
M(a, t− y)dG(y).

Theorem I.9 (Asymptotic mean age distribution, Theorem 24.1 of [65]). Suppose that G
is not a lattice distribution, that there exists a real λ solution of the characterisitic equation
Eq. (I.21) and that

∫+∞
0 te−λtdG(t) <∞, then for each a ∈ R+,

M(a, t) ∼ n1e
λtA(a), t→ +∞,

where n1 if defined in Theorem I.8 and A(a) := 2λ
∫ a

0 e
−λt [1−G(t)] dt.
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The method of generating functions seen above is efficient when the process is linear (each
cell divides or transforms itself independently from the others). It is a generic method that
can also be applied in more general situations: for example, in [77], the authors consider the
case where the lifetime of a cell in the system, as well as the number of its children, depends
on the other cells (sisters).
Another formalism, developed at the end of the 20th century, emerged to help analyze cell-
based models, especially ones with interactions: the Poisson point measures.

b) The Poisson point measure

The counting measure presented above (Definition I.2) can be enriched by adding physiologi-
cal or structural individual specificities. Using our example of a population of cells that divide
at an age-dependent rate, the counting measure allows us to enumerate the cells characterized
here by their age (continuous structuring variable):

νt =
Nt∑
i=1

δai(t),

where Nt stands for the total cell number in the population. Each cell i ∈ J1, NtK of the
population is therefore represented by a Dirac mass in ai(t) corresponding to its age.
The counting measure ν = (νt)t≥0 enriched with a structuring variable is a measure-valued
process in the finite point measure spaceM, where

M := {
n∑
i=1

δxi : n ≥ 0, x1, ..., xn ∈ X}

where X ⊂ Rd and δx is the Dirac measure at x. Such a formalism was first introduced
in a biological modeling context in [78] where the authors focus on the spatial dynamics
of non-moving individuals (plants) regulated by death and birth phenomena. In particular,
the birth of new plants is the result of a local dispersion of seeds, produced by a mother
plant, that instantly become mature individuals. This formalism was later exploited mainly
for ecological purposes, and led to models following population dynamics where individuals
reproduce asexually, age, interact and die, see for example (non-exhaustive!) [79, 80, 81, 55].
Some applications have also been considered for growth-fragmentation models [82].
In the following, we present an example of the use of the Poisson point measure process
based on the founder article [78] and the book [55](especially, Chapter 2). Suppose that our
population dynamics verifies the following assumptions:

1. at the initial time t = 0, the initial cell population is a measure of the spaceM, possibly
random.

2. Each cell i ∈ J1, NtK divides according to an exponential clock (hence the term Poisson)
at a rate of b(ai(t)).

The pathwise description of theM-valued stochastic process ν can be given using Poisson
point measures. Under the appropriate assumptions of regularity on the jump rates (usually
bounded, i.e. b(a) ≤ b̄), it can be shown that the process ν is a solution of the stochastic differ-
ential equation (SDE) governed by the elementary Poisson measure Q(ds, di, dθ) of intensity
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ds ⊗#dk ⊗ dθ19, where ds and dθ are Lebesgue measures on R+ and #dk =
∑
i≥1 δi(dk) is

a counting measure on N∗:

νt = ν0 +
∫ t

0

∫ +∞

0
1k≤Ns−

(
2δt−s − δak(t−s)+t−s

)
1θ≤b(νs−)Q(ds, dk, dθ). (I.22)

Analysis of the process paths ruled by Poisson point measures
The analysis of the process paths ruled by Poisson point measures uses stochastic calculus
techniques. The reader may refer to [83](specifically, Chapter 13 for an overview of those
techniques for biologically inspired models), [55] (Chapter 6) and [84].
Sometimes the process is first defined as the solution of an SDE, as is done in particular in
[55] (specifically, Definition 6.2 and Proposition 6.3 in Chapter 6), and also in this manuscript
(Chapter 3). We suppose in the following that process ν is defined as the solution of SDE
(I.22). The first step to analyze the process then consists in writing the associated infinites-
imal generator by integrating test functions f ∈ C1

b (R+,R+) against the measure process
νt:

< f, νt >=
∫
R+
f(a)νt(da) =

Nt∑
i=1

f(ai).

Then, we apply Ito’s formula20 for all functions F ∈ C1(R+,R+) to deduce the infinitesi-
mal generator GF [< f, νt >] associated with process νt. Once the equivalence between the
generator and the SDE solution has been shown, the following martingale problem can be
deduced by writing process < f, νt >, for all f functions, as the sum of its compensator and
a martingale (and taking F (x) = x, see Theorem 13.12 and 13.14 in [83] for details):

< f, νt > = < f, ν0 > +
∫ t

0
< LDf, νs > ds︸ ︷︷ ︸

compensator

+ Mφ
t , (I.23)

where LD is the operator defined by LDf = f ′−bf+2bf(0) which is the dual operator associ-
ated with the renewal equation (see subsection I.1.2), and Mφ

t is a càdlàg (Ft)t≥0-martingale
starting at time t = 0. Then, we deduce Dynkin’s formula by taking the expectation:

E [< f, νt >] = E [< f, ν0 >] + E
[∫ t

0
< LDf, νs > ds

]
.

A sufficient condition for Dynkin’s formula to hold is: for all positive functions f ∈ C1(R+),
for all measures ν ∈M, there exists a constant C such that:

| < LDf, ν > | ≤ C(1+ < f, ν >)

(see details in Theorem 13.16 of [83]). The asymptotic behavior can be deduced from the
martingale problem above (eq. (I.23)):

Theorem I.10 (Positive martingale and eigenfunction, Theorem 13.18 of [83]). Let qr be a
positive eigenfunction of LD corresponding to the eigenvalue r. Then, Qr(t) = e−rt < qr, νt >
is a positive martingale.

19The sign ⊗ refers to the outer product.
20See details in the Appendix chapter A.1.2
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If r is the Malthus parameter and satisfies the characteristic equation

2
∫ ∞

0
e−rsb(s)e−

∫ s
0 b(u)duds = 1 (I.24)

then the eigenfunction qr corresponds to the eigenfunction φ encountered in subsection I.1.2.
The asymptotic behavior of process νt can be deduced:

Theorem I.11 (Asymptotic behavior, Theorem 13.20 of [83]). Suppose that there exists a
positive constant λ solution of the characteristic equation (I.24) and let φ be its associated
eigenfunction (positive). The process Wt = e−λt < φ, νt > is a positive square integrable
martingale, and therefore converges almost surely and in L2 to a non-degenerate limit W ≥ 0
such that E [W ] = φ(ν0) > 0 and P [W > 0] > 0.

We have just seen that the eigenproblem of the renewal equation helps to deduce the
asymptotic behavior of process ν. It turns out that the stochastic process ν and the renewal
equation are more tightly linked.

Link between the Poisson point measure and the PDE. In [82], the authors used
other techniques based on the martingale problem and Dynkyn formula to tackle the growth-
fragmentation-death model case. They obtain an explicit link between the adjoint operator of
the growth-fragmentation-death PDE and its stochastic process counterpart. As regards to
the birth process, one can apply the Fubini theorem under suitable assumptions (for instance,
the division rate b is bounded), and deduce that

E [< f, νt >] = E [< f, ν0 >] +
∫ t

0
E
[
< LDf, νs > ds

]
.

Since both the operator L and the expectation are linear operators, we can write that
E
[
< LDf, νs >

]
= LDE [< f, νs >] and deduce the MK–FV equation.

Using another approach based on the law of large numbers, the authors expressed in [85]
the link existing between the MK–VF equation and the stochastic Birth–Death process. They
first show that the sequence Znt = 1

nZt converge when n goes to infinity to a deterministic
measure ηt ∈MF (Rd+)21 and deduce:

Proposition I.3 (Based on Proposition 3.4 of [85]). If η0 admits a density ρ0 ∈ L1(R+),
then for every t ∈ R+, ηt admits a density ρt which is solution of the MK–VF equation.

This method was then extended to the case of age- and trait-structured population mod-
els in [85].

I.1.5 Data and model matching (used in Chapter 2, 3 and 5)
The confrontation of a model with data is a key event in the life of the model. This crucial
step makes it possible to validate the relevance of using a model in a given context (here
biological). If this step is successful, “model predictions” on the dataset can be made in the
sense that hidden dataset information such as mean division time can be found, and sometimes

21the set of finite measures on Rd.
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participate in extrapolating experimental results. The adequacy between a model and a
dataset is achieved through a quantitative approach: the model parameters are estimated
through the minimization of a cost function, and a measure is proposed for the validity of the
predictive power of the model over the dataset. In other words, such a measure quantifies
how well the model with the estimated parameters fits the data22.
Let us suppose that we are interested in the cell dynamics of a population composed of K
cellular types. The dynamics of the whole population N(t; θ) := (Nk(t; θ))k∈J1,KK follows the
ODE system:

d

dt
N(t; θ) = f(N(t; θ), θ), N(t = 0; θ) = N0 (I.25)

where θ := (θl)l∈J1,LK ∈ Θ ⊆ RL is a parameter vector of size L, and f is a known function
and assumed to be sufficiently regular such that Eq. (I.25) has a unique solution (Cauchy-
Lipschitz theorem). Since the function f is known, the dynamics of N is totally dependent on
the value of the parameter θ (and, in some cases, on the initial condition N0). To estimate the
parameters (not directly observable) of the model, the ODE system (I.25) is supplemented by
experimental observations and represented by the following observable function g such that

y(ti; θ) = g(N(ti; θ), θ) + εi,

where y(ti; θ), i ∈ J1, IK are the I discrete-time observables (at time ti) of the population
vector N performed with a measurement error εi. The experimental measurements can be
the total cell counts (g(N, θ) =

∑K
k=1Nk), partial counts (g(N, θ) =

∑
k∈K̃ Nk, with K̃ ⊂ K)

or cell counts for each type (g(N, θ) = N). The observable function can sometimes depends
on additional parameters such as scaling or offset parameters included in θ [86].
The difference between the experimental data y† := (y†(ti))i∈J1,IK and the observables y(θ) :=
(y(ti; θ))i∈J1,IK predicted by the model is measured by the likelihood function (cost function)
classically defined as

L(θ|y†) := P
[
y(θ) = y†|θ

]
=

∏
i∈J1,IK

P
[
y(ti; θ) = y†(ti)|θ

]
. (I.26)

It is more convenient to use the negative log-likelihood function Llog(θ|y†) := − log(L(θ|y†)).
In the case of an ODE system model, the measurement error εi associated with each mea-
surement y†(ti) is generally modeled by a normal centered distribution: εi ∼ N (0, σ2

i )23. The
cost function is then commonly a weighted sum of squared residuals.
The maximum likelihood estimator is then defined as

θ̂ := arg max
θ∈Θ
L(θ|y†) = arg min

θ∈Θ
Llog(θ|y†). (I.27)

The θ̂ estimator is the parameter for which the conditional probability that the experimental
observations are equal to the observations predicted by the model is the highest. This does
not guarantee that θ̂ is the true value θ̂∗. The mere estimator θ̂ must therefore be associated
with a measurement of the parameter uncertainty for the model prediction to be relevant.
For each parameter θl, l ∈ J1, LK, its associated uncertainty measurement is given by the

22For instance, one can apply the Akaike Information Criteria (AIC) to compate nested submodels.
23In the case where the y measure is a vector of dimension D, it is also assumed that each measure is

independent. The measurement error εi follows then a normal centered distribution of diagonal covariance
matrix V ∈ RD×D such that [V ]dd = σ2

dd.
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confidence interval [σ−l , σ
+
l ] of confidence level 1 − α. This means that the true value θ̂∗l

belongs to the confidence interval with probability 1− α.
The construction of such confidence intervals can be done using a method widely recognized
as robust and based on the Likelihood Ratio (LR) test, see for instance [87, 88, 89, 90]. The
LR test is a statistical test used for comparing the goodness of fit of two models: a null
model (null hypothesis) against an alternative model. Using the likelihood definition (I.26)
and MLE definition (I.27), we define classically the following LR statistic (see for instance
[90, 86]):

λ(θ) := L(θ̂|y†)
L(θ|y†) ,

where θ ∈ Θ. To construct the pointwise likelihood-based confidence interval of parameter
θi, we first introduce its partial maximum likelihood estimate:

θ̂| [θi = x] := arg min
θ∈Θ;θi=x

Llog(θ|y†).

According to [90], the asymptotic distribution of λ verifies, under the null hypothesis, −2 log(λ) ∼
χ2(df), where df is the number of parameters considered24. Here, since we want to build a
confidence interval for parameter θi, df = 1.
The confidence interval of parameter θi is thus defined as:

{x ∈ Supp(θi)| − 2 log
(
λ(θ̂| [θi = x])

)
< ∆α} ⊂ R,

where the threshold ∆α is the 1 − α quantile of the χ2(1) distribution. We recall that
Llog(x) := − log(L(x)) and thus deduce the following confidence interval:

{x ∈ Supp(θi)| − 2
(
Llog(θ̂)− Llog(θ̂| [θi = x])

)
< ∆α} ⊂ R.

In the case of a finite dimension differential system, the numerical estimation of both the
MLE and confidence intervals can be performed efficiently using Matlab D2D software [91].
This was done in Chapter 3. The likelihood approach can also be applied in the case of
infinite dimension systems to infer the model parameters. For example, in [92], the authors
solve an inverse problem through a non-parametric approach based on maximum-likelihood
and Bayesian estimation on a special multi-type MK–VF like model to study cell prolifer-
ation in vivo and in vitro25. Another approach for parameter estimation is either to solve
numerically an inverse problem (non-parametric approach) [93, 94, 95] or prescribe a shape
to the parameters (parametric approach), see for instance [96]. If the cell population has
reached the exponential steady state before the start of the experiment, the stable state can
be used, as in [97] where the authors reconstruct the division rate from the intermitotic time
distribution measurements.

Depending on the quality and quantity of the data, it may be difficult to determine the
MLE or confidence intervals, and minimization algorithms (usually gradient descent) do not
converge. These difficulties may stem from structural or practical non-identifiability described
in [86] and defined as

24In particular, when the error law follows a Gaussian law, −2 log(λ) follows exactly a χ2(1).
25In this model, the type corresponds to a cell lineage and in addition to age, the authors consider another

structuring variable: the concentration of a division marker.
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• structural identifiability: assuming ideal measurements, with arbitrarily many and per-
fectly chosen measurement time points ti and absence of measurements errors (εi = 0),
a parameter θi is structurally identifiable if it is uniquely estimable from the model
observables y(ti; θ). In other words, the structural identifiability corresponds to the
injectivity of an inverse problem: given two observations y and ỹ, a parameter θ is
structurally identifiable if

y(ti; θ) = ỹ(ti; θ̃)⇒ θ = θ̃.

• practical identifiability: a parameter θi is practically identifiable if its confidence interval
is a compact set.

The practical identifiability depends thus on the quality and quantity of the data, and the ac-
curancy of the estimators can be improved by increasing the number of experimental points.
On the contrary, the structural identifiability is a data-free property that solely depends on
the model and the type of observations (e.g., mean cell number)26. Indeed, in some cases, this
quantitative increase in data does not lead to practical identifiability of a parameter [98]. In
these cases, the problem is often related to qualitative rather than quantitative factors. It is
in particular the case of microscopic parameters that cannot be deduced solely from macro-
scopic observation. One way to avoid these problems is to look at the theoretical inverse
problem (structural identifiability), which aims to verify whether it is possible to deduce the
uniqueness of the model parameters based on observable data (cell counts, for example) and
additional information (initial conditions, knowledge of certain parameters).

As example, in the case of the Malthus growth, a theoretical inverse problem can be:
supposing that m is known for all t ≥ 0, can we recover uniquely the Malthus parameter α
[98]? We can easily show that this inverse problem is well-posed: supposing that there exist
two functions m1 and m2 that verify the Malthus growth equation with parameter α1 and
α2, respectively, such that m1(t) = m2(t) for all t, we have:

d

dt
m1(t) = d

dt
m2(t)⇒ α1m1(t) = α2m1(t)⇒ α1 = α2.

This is a perfect example where additional information is not required. In constrast, one
can show that the (theoretical) inverse problem: “supposing that m is known for all t ≥ 0
and verifies the birth-death model, can we recover uniquely the birth and death rates?” is
not well-posed. Indeed, even considering a simple case where the birth and death rate are
constant, we obtain:

d

dt
m1(t) = d

dt
m2(t)⇒ (b1 − d1)m1(t) = (b2 − d2)m1(t)⇒ b1 − d1 = b2 − d2.

The relation b1 − d1 = b2 − d2 needs to be completed with additional information to deduce
the well-posedness. Usually, either the death or birth rate is assumed to be known.
For more complex ODE systems, the theoretical inverse problem is usually solved on a case-
by-case basis: for example by using linear algebra tools [33] or, for first and second order
differential equations, a technique called collage which is based on a fixed point method ap-
plied to the Picard operator [99, 100]. In the case of PDE, the theoretical inverse problems,

26Considering ideal measurements, [86] proposes a likelihood-based definition which appears to be a useful
tool when theoretical structural identifiability approaches fail. This definition is: a parameter θi is structurally
identifiable if its estimator θ̂i is the only maximum of the likelihood function L.
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intending to recover model functions, such as the death or division rate, from observable
model outputs are most of the time model-specific. For example, in the case of the age-
structured PDE model, most of the methods take advantage of the renewal property of this
equation to solve the inverse problem [94, 95, 93, 101, 96] (see details in Chapter 5). The
use of the eigenproblem is a rare example of method that can be applied to solve the inverse
problem (structural and practical identifiability) in many situations: age-structured model
[97], size-structured model [14, 44], etc. However this approach assumes that the observed
data reaches the steady state.
Check the structural identifiability property (or solve a theoretical inverse problem) is a
relevant approach that should be applied even before considering statistic models to fit pa-
rameters with data. This question has been addressed all along this thesis and is the subject
of an entire chapter (5) as well as an element of Chapter 3.

I.2 Introduction to the early development of the ovarian follicle

The development of ovarian follicles is a rare example of morphogenesis taking place in a
adult mammalian organism [102]. Like many morphogenesis processes, their formation and
growth are the result of the finely regulated biological mechanisms that we describe below.

I.2.1 The dynamics of follicle growth

The ovarian follicles are the basic anatomical and functional units of the ovaries (Figure I.1,
left-panel). In mammals, the main function of the ovary is to produce one or more fertile
oocytes (egg cells) at each ovulation and to create a hormonal environment conducive to the
eventual start of a pregnancy. The ovarian hormones also have non reproductive actions.
The maturation of the oocytes, named oogenesis, is a long and discontinuous developmental
process initiated during the fetal life that goes on throughout the individual’s life. The proper
development of the oocyte is supported by a somatic structure sheltering it; together they
form the ovarian follicle27. This somatic structure provides the oocyte with the necessary
environment for its growth and acquisition of the capability to be fertilized and proceed to a
fetal development.

a) The ovarian reserve of primordial follicles

The formation of the oocyte pool during the fetal life precedes the formation of the first
follicles in the primordial stage. The primordial follicles consist of an oocyte surrounded by
a single layer of somatic cells with a flattened shape [104]. The order of magnitude of the
initial cell number varies from ten to about fifty. Such a variability is inherited from the
mechanism underlying the formation of primordial follicles [105, 102], which assemble from
the fragmentation of multi-oocyte structures (the germ cell cysts) and retrieve more or less
(somatic) cells.
In mammals, the number of primordial follicles available for a female throughout her re-
productive life is fixed once and for all, during those critical periods (oocyte and follicle
formations) [104]. The size of the ovarian reserve of primordial follicles is extremely variable
between individuals of the same species belonging or not to different strains [106]. Despite its

27Folliculus means “little bag” in Latin.
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(courtesy of S. Fréret)

Fig. I.1 Ovary and folliculogenesis. Left-panel: anatomy and histology of the
ovary (courtesy of Danielle Monniaux). Top-left panel: overview of the genital
tract; top-right panel: external view of an ovary after ovariectomy; bottom-left:
schematic view of an ovarian section; bottom-right: histological slice of an ovary.
Right-panel: main steps of folliculogenesis during the lifespan of an individual for
different mammals species, adaptation of Figure 1 in [103].

undeniable importance, an accurate estimate of the size of an individual’s reserve of primor-
dial follicles remains difficult to obtain due to the lack of proper experimental observation
means.

Fig. I.2 Contributions of the different follicle categories to the total number of
ovarian follicles in three species at different ages, extracted from [107] p.320.
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Once formed, the primordial follicles may begin to grow immediately or become quies-
cent. In the latter case, they will either degenerate or resume their growth up to ten years
later [104, 108]. At any given moment in an individual’s life, only a small proportion of
primordial follicles enter growth (see the decreasing amplitude in the age-dependent distri-
bution in Figure I.2) leading to a decrease in the size of the ovarian reserve of primordial
follicles as the individual ages. The number of follicles that leave the primordial follicles
reserve varies according to the species: about 10 per day in rats before puberty, 1 to 3 in
ewes and about 20 in 20-year-old women [107]. In most mammals, death occurs before the
reserve is completely exhausted. The human species and some primates are examples where
this phenomenon usually happens the other way around: the reproductive life is shorter than
the lifespan (menopause, see Figure I.1).
Not all primordial follicles grow and not all growing follicles reach the final stage of ovulatory
follicles. For example, in women, of the few million primordial follicles present at 5 months
of gestation, only about 450 follicles will be used for the ovulatory menstrual cycles in the
normal human reproductive lifespan [109]. Before puberty, all the growing follicles degenerate
through a process called atresia. A tiny proportion (about 0.01 %) of follicles which start
growing after puberty manage to ovulate in adults and the rest disappear by atresia.

The frequency with which primordial follicles will exit their quiescent state and start
growing is a key factor in maintaining an individual’s fertility and a defective management of
the ovarian reserve of primordial follicles can have serious consequences on it [109, 110]. For
example, the early exhaustion of the ovarian reserve is one of the causes of human sterility
(we speak of POF: premature ovarian failure) and can be caused by spontaneous genetic
mutations, or chemical or radiation treatments [111]. The initial size and management of the
ovarian reserve of primordial follicles is a highly variable phenomenon between individuals,
of the same species or not, and may be affected by external environmental factors (pesti-
cides, drugs). The exhaustion of the ovarian reserve is also regulated by internal regulations
involving the growing follicles themselves. For example, the anti-Müllerian hormone (AMH)
secreted by the growing follicles inhibits the activation of primordial follicles and slows down
the growth of small follicles [112].
Some evolutionary strategies have been developed to ensure an individual’s fertility despite
the initially small size of the ovarian reserve of primordial follicles. For example, ewes of
the Booroola genotype, which carry a naturally occurring mutation, have a lower reserve of
primordial follicles than non-carrier ewes at birth, yet their ovaries contain two to three times
more primordial follicles in adulthood [113]. This difference is offset by a different strategy
in managing the reserve of primordial follicles. The Booroola genotype has a more economic
behavior: the rate of follicle activation is lower. This difference between these two genotypes
is studied in Chapter 2.

In the following section, we describe the mechanisms occuring during the growth of a
follicle once it has been activated.

b) Folliculogenesis stages

The follicle development, namely folliculogenesis, is a multistage morphogenesis process in-
volving both growth and functional maturation that can be divided into two main phases:
the basal phase of follicle development, the longest (around 75% of the development time),
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which is under the control of ovarian growth factors, and the terminal phase, which is under
the control of the pituitary gonadotropins (hormones) (see Figure I.3 and Table I.3). In
all the mammalian species, the first steps of follicle development are comparable from the
primordial follicle stage (30–50 µm) up to the apparition of a fluid-filled cavity called the
antrum (at 200–250 µm of follicular diameter) in the small growing follicle.

Development time (day) Follicle diameter (mm)
Species Total From follicles

with antrum
Primordial
follicle

Antrum
formation Ovulation

Mouse 19 to 22 3 to 4 0.03 to 0.05 ≈ 0.2 0.6 to 0.8
Doe 97 10 0.03 to 0.05 ≈ 0.2 6 to 7
Sheep 180 44 0.03 to 0.05 ≈ 0.2 7 to 11
Cow ND 22 to 42 0.03 to 0.05 ≈ 0.2 10 to 20
Mare 120 35 0.03 to 0.05 ≈ 0.2 45

Woman > 200 50 0.03 to 0.05 ≈ 0.2 20

Table I.3 – Follicular development times and follicular diameters during certain
stages of folliculogenesis in different mammals. (Table based on Tables 1 and 2 of
[103]).

The activation of primordial (quiescent) follicles is characterized by three main processes28

[114]: (i) an irreversible transition of the somatic cell phenotype, characterized by a change in
their shape, from flattened (quiescent cells) to cuboidal (proliferative cells); (ii) an increase in
the number of somatic cells by cell division and (iii) the awakening and associated enlargement
of the oocyte. The activation phase ends when all somatic cells have transitioned, at which
time the mono-layer developmental stage is completed [115], and somatic cells will go on
proliferating and building up several concentric layers [115].

During the main part of the basal phase, the follicle growth is the result of a joint increase
in both the oocyte size and the number of surrounding somatic cells. The oocyte growth and
cell proliferation are coupled by a close molecular dialogue established between the oocyte
and the somatic cells. Growth factors derived from somatic cells (KIT Ligand) promote the
growth of the oocyte and in turn those from the oocyte (BMP15, GDF9) influence the so-
matic cell proliferation. The morphological evolution of a follicle at this stage results from a
finely balanced equilibrium between the growth rate of the oocyte and the proliferation rate
of the follicular cells determining, for a given follicular diameter, the size of the oocyte, and
the number of somatic cells and layers. This equilibrium is compromised in the case of some
natural genetic mutations (observed and studied particularly in sheep species) or mutations
induced experimentally (Knock-Out (KO) in mice). Depending on the molecular target of
these mutations, the unbalance between growth and proliferation leads to either large oocytes
surrounded by fewer cells (example of the FecB mutation in Booroola ewes, associated with
an increase in the number of ovulations), or on the contrary to small oocytes buried in a
dense mass of follicular cells (example of the inhibin KO in mice) [106].
At the beginning of the basal phase of the follicle development, from the primary stage to
the preantral stage, the ovarian follicle grows as a compact cell aggregate with a spherical
shape. In sheep, the somatic cell population doubles some 10–12 times and the cell layer
number grows from one up to four-six layer [1]. In the multi-layered follicle about 200µm
diameter (Table I.3), fluid-filled cavities appear and merge to form a single large cavity called

28In Chapter 2, we consider whether those three processes are sequential or not.
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Fig. I.3 Main steps of follicle development. Growing follicles exit the pool of
quiescent primordial follicles. The primordial to primary stage transition is char-
acterized by a morphological change of somatic cells: from a flattened shape, they
adopt a round shape (cuboidal). During the basal phase, somatic cells proliferate
while the maximal diameter of the oocyte is reached. During the terminal phase,
cells proliferation slows down and follicle growth is mainly due to the antrum in-
flation. The vascularized theca appears at the pre-antral stage and has a role in
maintaining the structure of the follicle. Between the pre-antral stage and the antral
stage, small cavities filled with liquid appear within the somatic tissue, then merge
to form a large cavity: the antrum. The pictures are histological sections of ovarian
follicles in the compact growth phase (courtesy of Danielle Monniaux).

the antrum. Up to this stage, the follicular development is mainly controlled by local ovar-
ian factors. When it enters the final development phase, the follicle becomes dependent on
the supply of pituitary hormones: the Follicle-stimulating hormone (FSH) and Luteinizing
hormone (LH). The transition from the basal to the terminal phase corresponds thus to a
functional change of the follicle: to continue its growth, the follicle needs an FSH hormonal
support. In some mammalian species, this functional change appears after the appearance
of the antrum cavity while in others like the rodents it appears at the time of the antrum
formation.

I.2.2 Dataset presentation
The dataset used throughout this work was provided to us by Kenneth McNatty and is par-
tially published in [116, 117]. The dataset consists of morphological measurements of follicles
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performed by histology on ovaries from 120– and 135–day-old sheep fetuses (cf Figure I.4):
follicle and oocyte diameter, cell number, layer number, presence or absence of an antrum.
The sheep used in this study are of the Romney strain. The dataset is subdivided into two
subsets corresponding to two different genotypes: the “wild-type” genotype and the “mu-
tant” Booroola (BB) genotype. Morphodynamic differences are observed between these two
genotypes. During fetal development, the primordial follicles appear later in BB, as well as
the subsequent developmental stages. At the end of the compact phase, oocytes are larger
and there are fewer cells in BB. The alteration of follicle development observed in Booroola
genotype comes from a natural mutation affecting the receptor to growth factor BMP15 [106].
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Fig. I.4 Dataset presentation [116]. The blue points represent the 120–days
old fetuses while the orange ones correspond to the 135–days old fetuses.

The measurement of morphological characteristics of ovarian follicles is an invasive proce-
dure [116]. The ovaries are removed from 120– and 135–day-old fetuses, then sectioned (slices
of 20µm thickness) and fixed with a chemical agent. To perform the measurements (diameter,
number of layers, etc.), experimentalists select the optical plane passing through the oocyte
nucleolus (see for instance Figure I.5). Cells are counted from this optical plane. This 2D
cell number can be used to assess the whole 3D cell number from stereological techniques
(see details in [116]). We do not have access to temporal information associated with the
morphological measures. We dwell on a particular feature of our dataset, the follicle type,
that we describe in more details below.

a) Follicle types in early development

Follicles (in basal growth phase) were classified according to a system, first introduced by [118]
for the mouse and adapted for the bovine species in [119, 116]. It is based on morphological
criteria (somatic cell shapes, number of layers and presence of an antrum) that can easily be
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Fig. I.5 Histological slice of an ovary with different types of follicles.
Courtesy of Danielle Monniaux.

observed on histological slices (see Figure I.5) and includes six categories:

• Type 1: primordial quiescent follicles (one layer of flattened somatic cells),

• Type 1A: transitory follicles (one layer with a mixture of flattened and cuboidal somatic
cells),

• Type 2: primary follicles (from one to less than two complete layers of cuboidal somatic
cells),

• Type 3: small preantral follicles (from two to less than four complete layers of cuboidal
somatic cells),

• Type 4: large preantral follicles (from four to less than six complete layers of cuboidal
somatic cells),

• Type 5: small antral follicles (more than five layers of cuboidal somatic cells and a fully
formed antrum).

Figure I.6 presents the number of follicles of different types observed in our dataset. There
are some differences in the distribution of follicle types according to the genotype, due to the
later apparition of follicles in BB ewes. There are only very few primordial follicles already
formed at 120 day of age in the Mutant genotype. Newly formed follicles have not reached
the Type 4 and 5 at 120– or 135– days of age in Mutant genotype. In the following chapters,
we have used most of the types present in the dataset: Type 1, 1A and 2 are used to model
the activation phase (Chapter 2), and Type 2 to 4 are used for the compact growth phase
modeling (Chapter 3).

b) Kinetics information: dataset building of Chapter 3 and Chapter 4

In complement to the dataset, we use information, presented in [121, 122, 120], on the times
of appearance of the different follicular types during the fetal life (see Figure I.7):

• at day 100, most of the observed follicles were at the primordial stage (Type 1, quiescent)
and few of them were at the primary stage (Type 2).
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Fig. I.6 Follicle types in dataset [116]. Follicle distribution according to follicle
types.

• at day 120, most of the observed follicles were at the primordial stage and few of them
were at higher stages (the most advanced have three somatic cell layers, Type 3 follicles).

• at day 135, most of the observed follicles were still at the primordial stage and some of
them reach the early antral stage (Type 4).

From these data, we deduce the minimal transit times: it takes 20 days to go from a
Type 2 to a Type 3 follicle, and 15 more days to go from a Type 3 to a Type 4. Due to
the delay in follicle development observed for the Mutant genotype (BB), we do not have
information for the third time point (t = 35). Our study therefore has focused only on the
Wild-Type genotype and we build a new dataset with the following criteria:

• category “t=0”: Type 2 follicles,

• category “t=20”: Type 3 follicles with three complete layers,

• category “t=35”: Type 4 follicles.

Our three categories correspond thus to relative time categories: “t=0”, “t=20” and “t=35”
are not real times but transit times (between specific follicles categories).
We obtain the dataset of 101 follicles presented in Figure I.8 (red, blue and green points) that
is used in Chapter 3 to calibrate the model dedicated to the compact growth phase. Note
that some follicles with the same oocyte diameter were not selected, due to the restrictive
criterion on the Type 3 follicles.

c) Dataset building of Chapter 2

The dataset dedicated to the activation of the ovarian follicles used in Chapter 2 is built with
Type 1, Type 1A and Type 2 follicles of both the Mutant and Wild-Type genotypes from the
original dataset. We select the healthy (properly formed) follicles of Type 1, all the Type 1A
follicles and early Type 2 follicles corresponding to follicles with a single layer.



I.2 Introduction to the early development of the ovarian follicle 37

Fig. I.7 Number of secondary and tertiary follicles, primary follicles, pri-
mordial follicles and oocytes per ovary in sheep fetuses with respect to
the specific day of gestation. Extract from Figure 3 in [120]. The values given
(scale bars on the left) are geometric means plotted on a log scale and vertical bars
are the 95% confidence intervals. The number associated with each histogram refer
to the number of fetuses. The star sign ‘∗’ indicates significant differences between
the genotypes (�: Booroola genotype, �: Wild-Type genotype).
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Fig. I.8 Initial Wild-Type and extracted datasets. We extract from the orig-
inal dataset, partially presented in [116], two datasets: one dedicated to the compact
growth phase (red, green and blue points) and one dedicated to the activation phase
(coral and cyan points, and cross sign +). The gray points represent the follicles of
the original dataset that do not belong to any of the selected datasets.

The oocyte size, as well as the ratio between the initial oocyte diameter and the cell
number, inherited from the time of formation of the oocyte, has to be sufficient to start their
development [105], and the activated follicles are thus the “properly formed” ones.
To select these follicles among the whole Type 1 follicles, we use the information, gathered
in [123, 102] to design appropriate criteria.29 Only properly formed follicles will be able to
get activated. The oocyte size, as well as the ratio between the initial oocyte diameter and
the cell number, inherited from the time of formation of the follicle have to be high enough.

We thus first fix the following thresholds on the minimal follicle diameter (34µm), minimal
oocyte diameter (24µm) and minimal number of cells (fifteen). In addition, we introduce the
notion of cell coverage of the oocyte to select the follicles with a good balance between the
initial oocyte diameter and the cell number. We introduce the coefficient eO that represents
the average contact length between a somatic cell and the oocyte:

eO = πdO
N s
g

(I.28)

where dO is the oocyte diameter and N s
g is the number of cells counted on the largest section.

We compute the eO coefficient for each follicle in our dataset (see Figure I.9). Note that
considering an oocyte diameter of 24µm and a cell number of fifteen (as indicated in [123]),
we obtain a coefficient eO equal to 5µm, which is a lower bound of the values obtained from
our dataset. The oocyte diameter of 24µm is also lower than the minimal oocyte diameter
in our dataset.

Finally, we consider the following critera to select the activated follicles as well as the
“newly” Type 2 follicles:

29This study was performed on histological sections of follicles of Romanov and Ile-de-France strains.
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Fig. I.9 Coefficient eO. Using Formula (I.28), we compute the cell coverage
for each follicle of the dataset introduced in section I.2.2, for both the Wild-Type
genotype (++) or the Booroola genotype (BB). Left-panel: cell coverage coefficient
eO with respect to the oocyte diameter; right-panel: cell coverage coefficient eO
with respect to the cell number. The coral points represent the Type 1 follicles, the
green ones, the Type 1A and the blue points, the Type 2 follicles.

[C1 ] The maximal cell coverage of the oocyte is eO ≤ 25µm. Since the somatic cell diameter
is about 10-12µm, we assume that the cell coverage eO cannot exceed twice this value,
so that cells remain in contact.

[C2 ] The oocyte diameter verifies dO ≤ 55µm.

The remaining follicles, that do not verify these criteria, are assumed to be unable to pursue
their development.

Applying the above criteria ([C1] and [C2]), we construct the dataset used for the cal-
ibration of the follicle activation model: the Wild-Type dataset consists of 90 data points
while the BB dataset consists of 81 data points. The dataset for the Wild-Type genotype
corresponds to the coral and cyan points, and cross sign points in Figure I.8. We can observe
that the two datasets overlap each other on the mono-layer Type 2 follicles.

I.3 Contributions and outline of the dissertation
The objective of this thesis is to design models dedicated to the early growth phase of the
ovarian follicle, and analyze them using complementary formal and numerical approaches.
Few models have been proposed to represent the dynamics of somatic cells involved in the
development of an ovarian follicle. Most of the models tackle the terminal phase aspect
of the folliculogenesis [10, 24, 22, 23], where the cell proliferation is under the control of
hormones (FSH). Reviews on this aspect can be found in [124, 125]. To our knowledge,
only one model is dedicated to the somatic cells dynamics modeling during the basal phase:
introduced in [1], this model is a nonlinear stochastic age- and spatially-structured model
dedicated to the dynamics of both the somatic cells and the oocyte. This article has been
the starting point for this thesis and is presented in more detail at the beginning of Chapter 3.

During this thesis, two models representing the somatic cell dynamics shaping the ovar-
ian follicle were proposed: one deals with the sequence of events occurring just after the
initiation of follicle growth while the other is dedicated to the compact phase of follicular
development. For each model, using data presented in the subsection I.2.2 above, quantita-
tive analyses were conducted to complement the qualitative analyses. We also proceed for
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each model to parameter calibration by proposing strategies adapted to our time-free dataset.

Fig. I.10 Chapter presentation.

In Chapter 2, we investigate the sequence of somatic cell events occurring just after follicle
activation. We introduce a nonlinear stochastic model accounting for the joint dynamics of
two cell types, either precursor or proliferative cells. The initial precursor cell population
transitions progressively to a proliferative cell population, by both spontaneous and self-
amplified processes. In the mean time, the proliferative cell population may start either a
linear or exponential growing phase. A key issue is to determine whether cell proliferation is
concomitant or posterior to cell transition, and to assess both the time needed for all precur-
sor cells to complete transition and the corresponding increase in the cell number with respect
to the initial cell number. Using the probabilistic theory of first passage times, we design
a numerical scheme based on a rigorous Finite State Projection and coupling techniques to
assess the mean extinction time and the cell number at extinction time. We also obtain ana-
lytical formulas for an approximating branching process. We calibrate the model parameters
using an exact likelihood approach using both experimental and in-silico datasets. We carry
out a comprehensive comparison between the initial model and a series of submodels, which
help to select the critical cell events taking place during activation. We finally interpret these
results from a biological viewpoint.

In Chapter 3, we analyze a multitype age-dependent model for cell populations subject to
unidirectional motion in both a stochastic and deterministic framework. Cells are distributed
into successive layers; they may divide and move irreversibly from one layer to the next. We
adapt results on the large-time convergence of PDE systems and branching processes to our
context, where the Perron–Frobenius theorem cannot be applied. We derive explicit analyt-
ical formulas for the asymptotic cell number moments, and the stable age distribution. We
illustrate these results numerically and apply them to the study of the morphodynamics of
ovarian follicles. We prove the structural parameter identifiability of our model in the case
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of age independent division rates. Using a set of experimental biological data (Wild-Type
genotype solely), we estimate the model parameters to fit the changes in the cell numbers in
each layer during the early stages of follicle development.

In Chapter 4, we present an additional work following that presented in Chapter 3. We
present another approach to represent the compact growth of an ovarian follicle using the
pre-existing Hele-Shaw model and other free boundary problems.

Finally, in Chapter 5, we study a multiscale inverse problem associated with a multi-type
model for age structured cell populations. In the single type case, the model is a McKendrick–
VonFoerster like equation with a mitosis-dependent death rate and potential migration at
birth. In the multi-type case, the migration term results in an unidirectional motion from
one type to the next, so that the boundary condition at age 0 contains an additional ex-
trinsic contribution from the previous type. We consider the inverse problem of retrieving
microscopic information (the division rates and migration proportions) from the knowledge
of macroscopic information (total number of cells per layer), given the initial condition. We
first show the well-posedness of the inverse problem in the single type case using a Fredholm
integral equation derived from the characteristic curves, and we use a constructive approach
to obtain the lattice division rate, considering either a synchronized or non-synchronized
initial condition. We take advantage of the unidirectional motion to decompose the whole
model into nested submodels corresponding to self-renewal equations with an additional ex-
trinstic contribution. We again derive a Fredholm integral equation for each submodel and
deduce the well-posedness of the multi-type inverse problem. In each situation, we illustrate
numerically our theoretical results.
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Chapter II
Stochastic nonlinear model for somatic
cell population dynamics during ovarian
follicle activation

This chapter is based on

Frédérique Robin, Frédérique Clément, Romain Yvinec. Stochastic nonlinear model for
somatic cell population dynamics during ovarian follicle activation. Submitted in J.
Math. Biol in February 2019 (available in Arxiv, [126]).

In mammals, the number of oocytes (egg cells) available for a female throughout her
reproductive life is fixed once for all, during the fetal or perinatal period [104]. Dormant
oocytes are sheltered within somatic structures called ovarian follicles, which remain in a
quiescent state until they get activated and undergo a longstanding process of growth and

43
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maturation ending by ovulation (release of a fertilizable oocyte). Growth initiation is asyn-
chronous among follicles, so that all developmental stages can be observed in the ovaries at
a given time, and follicles can remain quiescent for as long as tens of years [108].

In the earliest stages of development, ovarian follicles are made up of the oocyte and
a single layer of surrounding somatic cells. The initial cell number is on the order of ten
or several of tens according to the species and is quite variable between follicles. Such a
variability is inherited from the mechanism underlying the formation of primordial follicles
[105, 102], which assemble from the fragmentation of multi-oocyte structures (the germ cell
cysts) and retrieve more or less (somatic) cells.

The activation of primordial (quiescent) follicles is characterized by three main processes
[114]: (i) an irreversible transition of the somatic cell phenotypes, characterized by a change in
their shape, from flattened (precursor cells) to cuboidal (proliferative cells); (ii) an increase in
the number of somatic cells by cell division and (iii) the awakening and associated enlargement
of the oocyte. The activation phase is ended when all somatic cells have transitioned, at
which time the mono-layer developmental stage is completed, and somatic cells will go on
proliferating and build up several concentric layers [115].

In this work, we focus on the sequence of events occurring just after the initiation of follicle
growth. A key issue is to determine whether cell proliferation is concomitant or posterior
to cell shape change, and to assess both the time needed for all precursor cells to complete
transition and the corresponding increase in the cell number with respect to the initial cell
number.

We introduce a model based on a formalism of cell population dynamics accounting for
both cell transition and division. Within such a formalism, linear models have been built up
on the branching property, disregarding cellular interactions [63, 65], while nonlinear models
have accounted for interactions among different cell populations (e.g., typically, a feedback
from differentiated cells onto precursor cells) either to ensure homeostasis, as in dynamical
models for blood cells [127, 128, 129], or to achieve a proper developmental sequence, as
in dynamical models for neural cells [9]. On our side, we are interested in assessing the
duration of the activation process, and in ordering the events taking place during activation.
A natural concept in probability theory to investigate these issues is the first passage time
theory [130, 131], which aims to characterize the statistics of random events related to some
particular outcomes. The analysis of first passage times are becoming more and more popular
in mathematical biology [132, 133], to quantify random times needed to reach a given final
state, such as population extinction for instance. Typically, the parameters of cell dynamics
models are calibrated using time series of cell counts sorted into different cell types [134, 135].
In contrast, in the case of early folliculogenesis, we only have the number of cells. Indeed,
precursor and proliferative cell numbers are not available directly as a function of time, but
only in relation with other morphological variables such as the oocyte and follicle diameters
[119, 136, 116, 137], so that we lack kinetic information. Yet, thanks to the discrete-time
embedded Markov chain, we could apply here classical statistical tools like the maximum
likelihood [51], and related parameter identifiability concept [138], by using the information
on the state space alone.

Our model allows us to study the joint dynamics of the precursor cells F and proliferative
cells C within a single follicle, whose populations are ruled by four types of possible cell events.
Two cell events occur at the expense of the precursor cells, which are consumed during their
transition : (i) R1 is the spontaneous transition of precursor cells into proliferative cells,
whose rate α1F is linearly proportional to the number of precursor cells; (ii) R2 is the auto-
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amplified transition of precursor cells into proliferative cells, which occurs at rate β1
FC
F+C .

This event represents the feedback of proliferative cells onto the transition of the precursor
cells. Two other cell events increase the proliferative cell population without affecting the
precursor cell population: (i) R3 is an asymmetric division of precursor cells F (giving rise to
one precursor cell and one proliferative cell), which occurs at rate α2F ; (ii) R4 is a symmetric
division of the proliferative cells C (giving rise to two proliferative cells), which occurs at rate
γC.
These four cell events are the building blocks of our main modelMFC , which is summarized
below :

Cell events Rate
R1 : (F,C)→ (F − 1, C + 1), α1F,

R2 : (F,C)→ (F − 1, C + 1), β1
FC
F+C ,

R3 : (F,C)→ (F,C + 1), α2F,
R4 : (F,C)→ (F,C + 1), γC .

(MFC)

Cell events R1 and R4 constitute the fundamental ingredients involved in the activation
process. We also consider two additional cell events, R3 and R4, which are not only intended
to enrich the model behavior, but are also substantiated by biological observations.
Cell event R3 considers that flattened (precursor) cells may divide before transition, which is
consistent with experimental studies where KI67 staining (a marker of cell cycle progression)
was detected in some flattened cells [139]. Since the number of flattened cells is non increas-
ing, one can envisage the existence of self-renewing asymmetric divisions in flattened cells,
giving birth to one proliferative cell (and keeping the precursor cell number unchanged).
Cell event R2 accounts for a possibly auto-amplified acceleration in cell shape transitions,
which could result from the molecular mechanisms underlying follicle activation and estab-
lishing a dialog between the oocyte and somatic cells [140]. In brief, the initiation signal
(mTORC1) is first perceived by somatic cells [141], which then start stimulating the oocyte
through specific signaling pathways (KIT-Ligand cytokine). In turn, once activated, the
oocyte signals to the somatic cells through factors of the TGFβ family [142] (mainly GDF9
and BMP15). This molecular dialog settles a positive feedback loop, which can be repre-
sented by an auto-amplified transition rate. In sheep, there exist natural mutations affecting
this molecular dialog (disruption of either the GDF9 or BMP15 ligand, or the receptor to
BMP15). Introducing cell event R2 can help to investigate possible differences in the acti-
vation process in wild-type compared to mutant strains. More specifically, we have access
to experimental cell numbers (courtesy of Ken McNatty) obtained either from a wild-type
strain (Ile-de-France) or a mutant strain for BMP15R (Booroola), whose follicle development
is known to be clearly different in the multi-layer stages [116], especially as far as cell dy-
namics. Whether cell dynamics is also affected during the mono-layer stage remains unclear
[143], which is an additional motivation for this work.

All the reactions rates (α1, β1, α2 and γ) are non-negative. At initial time, there are only
precursor cells, and the initial condition is chosen as a random positive integer variable, in
consistency with the observed biological variability.

In the following, we will use different submodels derived from the full model MFC , by
removing either one or several cell events (hence setting to zero the corresponding parameter
values β1, α2 and/or γ). We will name these submodels by explicitly mentioning the re-
maining events. For instance, model (R1,R3) consists only of the spontaneous cell transition
event and asymmetric cell division (β1 = γ = 0), while model (R1,R4) is composed of the
spontaneous cell transition event and asymmetric cell division (β1 = α2 = 0).
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Model MFC can be mathematically formulated either with Ordinary Differential Equa-
tions (ODEs) or Continuous time Markov chain (CTMC) [144].
The stochastic description is especially appropriate when dealing with a small number of
cells. Even if the cell numbers in activating follicles are small, a deterministic formulation
of model MFC can still be convenient to get insight into the transient behavior of the cell
populations and the parameter influence on the model outputs. Using the stochastic version
of model MFC , we can illustrate the dynamics of both the precursor and proliferative cells
(Figure II.1). The C population grows as the F population decreases until extinction (top-left
panel), and the proportion of proliferative cells pC := C

F+C increases monotonously from 0 to
1 (bottom-left panel). In the (C,F ) phase plane (top-right panel), we can observe that the
number of precursor cells remains constant (aligned red or black points on the horizontal line
(k, F ), k ∈ N) whenever there is a division event (R3 or R4). In contrast, whenever there is
a transition event (R1 or R2), the number of precursor cells decreases by one, as illustrated
by the jump from the current line ((k, F ), k ∈ N) to the lower one ((k, F −1), k ∈ N). Hence,
in this simulation, we observe a sequence of transition and division events (which appear to
be here mainly spontaneous transitions R1 and asymmetric divisions R3 due to the specific
parameter choice). If we are only given the sequence of events types (i.e. sequence of state
visiting by the chain) in this plane, we cannot discriminate R1 from R2, neither R3 from
R4. Note that, depending on the initial condition, some parts of the phase plane cannot
be reached. The trajectories can also be observed in the (C, pC) phase plane (bottom-right
panel). In this case, the trajectories remain on the curves parameterized by ((k, k

F+k ), k ∈ N)
if a division event (R3 or R4) occurs, whereas they move to the upper curves parameterized
by ((k, k

F−1+k ), k ∈ N) whenever a transition event (R1 or R2) occurs.
The manuscript is organized as follows. After introducing the mathematical definitions

in Section 2, we analyze both the deterministic and stochastic versions of model MFC in
Section 3. In subsection 3.1, we obtain the analytical solutions of the deterministic model,
and explore the parameter influence on the model outputs. Subsection 3.2 deals with the
Markov chain formulation of modelMFC . In the linear case (β1 = 0), we obtain analytical
formulas for the mean extinction time. In the nonlinear case, we design a numerical scheme
based on a rigorous Finite State Projection (see [58, 59]) and coupling techniques to assess
the mean extinction time. In both cases, we study the sensitivity of the extinction time,
as well as the cell number at extinction time, with respect to the parameter values. In
section 4, using the embedded Markov chain, we calibrate the parameters of the different
submodels and full modelMFC from our experimental, time-free datasets, and analyze the
practical identifiability in each case. From data-fitting, we manage to retrieve hidden kinetic
information and provide some biological interpretations of out results. We conclude in section
5.

II.1 Model definition

Markov chain formulation
On a probability space (Ω,F ,P), let the initial number of precursor (flattened) cells F0 be
a positive integer random variable. The population of precursor cells F and proliferative
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Fig. II.1 Illustration of the dynamics generated by model MFC . The dy-
namics of the precursor and proliferative cells are computed using a Gillespie SSA
algorithm [145] with the parameter values: α1 = 1, β1 = 0.01, α2 = 10, γ = 0.001
and a deterministic initial condition F (0) = 4. In each panel, the black or gray lines
represent 9 different trajectories of the process and the red line corresponds to one
specific trajectory. Top-left panel: Number of precursor F (black lines) and prolifer-
ative C (gray lines) cells as a function of time. Bottom-left panel: Proportion pC of
proliferative cells as a function of time. Top-right panel: Number of precursor cells
F as a function of the number proliferative cells C. Bottom-right panel: Proportion
of proliferative cells pC as a function of the number of proliferative cells C.

(cuboidal) cells C follows the Stochastic Differential Equation (SDE) below:

Ft = F0 − Y1

(∫ t

0
α1Fsds

)
− Y2

(∫ t

0
β1

FsCs
Fs + Cs

ds

)
,

Ct = Y1

(∫ t

0
α1Fsds

)
+ Y2

(∫ t

0
β1

FsCs
Fs + Cs

ds

)
+ Y3

(∫ t

0
α2Fsds

)
+ Y4

(∫ t

0
γCsds

)
. (II.1)

where Yi, for all i = 1, 2, 3, 4, are mutually independent standard Poisson processes. X =
(Xt)t≥0, with Xt := (Ft, Ct) for all t ≥ 0, denotes the solution of (II.1). (Ft)t≥0 denotes the
canonical filtration generated by the process X.

We can also see X as a continuous-time Markov chain with countable state space S :=



48 Chapter II. Modeling the ovarian follicle activation

N2\{(0, 0)} and transition matrix Q := (q(x, y))x,y∈S , with for all (f, c) ∈ S,

q ((f, c), (f − 1, c+ 1)) = α1f + β1
fc

f + c
,

q ((f, c), (f, c+ 1)) = α2f + γc.

We recall that Q is linked to the infinitesimal generator L by the Dynkin’s formula (Theorem
2.2, p.380, [54]):

Lg(x) =
∑

y∈S,y 6=x
q(y, x)g(y)− q(x)g(x), where q(x) =

∑
y∈S,y 6=x

q(x, y).

Thus, the infinitesimal generator L of X is given by

Lg(f, c) = (α1f + β1
fc

f + c
) [g(f − 1, c+ 1)− g(f, c)]

+ (α2f + γc) [g(f, c+ 1)− g(f, c)] ,

for all g bounded functions and for all (f, c) ∈ S.
In the whole study, we will need the following hypotheses:

Hypothesis II.1. The spontaneous activation rate α1 is positive.

Hypothesis II.2. The initial condition F0 is L2-integrable.

For specific results, we will also need an additional hypothesis:

Hypothesis II.3. The spontaneous activation rate α1 is strictly greater than the proliferation
rate γ: α1 > γ.

With Hypothesis II.2, we apply Theorem 1.22 of [52] (p.12-13) and deduce that the process
Mg
t defined as

Mg
t := g(Xt)− g(X0)−

∫ t

0
Lg(Xs)ds (II.2)

is a Ft-martingale, for all t ≥ 0.

Note that the F process is a non-negative decreasing process. To study the hitting time
of the state F = 0, we introduce the following definition

Definition II.1. Let τF0 be the extinction time of the precursor cell population F

τF0 := inf{t ≥ 0; Ft = 0|F0} .

The number of proliferative cells C at t = τF0 is CτF0 .

Mean-field formulation
To get some insight into the model, we describe the mean-field version of the model MFC ,
given by the set of ODE below:

d
dtf(t) = −α1f(t)− β1f(t) c(t)

f(t)+c(t) ,
d
dtc(t) = (α1 + α2)f(t) + β1f(t) c(t)

f(t)+c(t) + γc(t),
(II.3)

with the initial condition (f(0), c(0)) = (f0, 0), with f0 ∈ R+.
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II.2 Model analysis
In this section we analyze the cell dynamics of the precursor and proliferative cells both for
the deterministic and stochastic versions of modelMFC . We start by solving analytically the
deterministic formulation, and investigate the effect of each parameter on the model outputs.
Then, we study the mean extinction time of the precursor cell population and the number of
proliferative cells at that time.

II.2.1 Analysis of the deterministic model
From the ODE sytem (II.3), we deduce the change in the proliferative cell proportion pC(t) :=

c(t)
f(t)+c(t) :

d

dt
pC(t) = α1 + α2 − (α1 + 2α2 − β1 − γ)pC(t) + (α2 − β1 − γ)pC(t)2

= (α2 − β1 − γ)(pC(t)− 1)(pC(t)− α1 + α2
α2 − β1 − γ

). (II.4)

From ODEs (II.3) and (II.4), using the classical method of separation of variables, we can
compute the analytical expressions for the proliferative cell proportion pC(t), proliferative
cell number c(t) and precursor cell number f(t):

Proposition II.1. The solution of the ODE system (II.3) is, for all t ≥ 0,

f(t) = f0 exp
(
−α1t− β1

∫ t

0
pC(s)ds

)
,

c(t) = f0

(
exp

(
α2t+ (γ − α2)

∫ t

0
pC(s)ds

)
− exp

(
−α1t− β1

∫ t

0
pC(s)ds

))
.

In addition, the solution of ODE (II.4) is

pC(t) = 1− exp (−(α1 + β1 + γ)t)
1− α2−β1−γ

α1+α2
exp (−(α1 + β1 + γ)t)

. (II.5)

Remark II.1. The total cell number verifies

n(t) := f(t) + c(t) = f0 exp
(
α2t+ (γ − α2)

∫ t

0
pC(s)ds

)
.

As the proliferative cell proportion pC converges to 1, the total cell number grows exponen-
tially, first at rate α2 and then at rate γ.

We illustrate the changes in the state variables along time on Figure II.2, for different
parameter configurations corresponding to different submodels. The transition kinetics of
the precursor cells can either follow an exponential decay when β1 is zero (or much smaller
than α1), or a sharper transition when β1 is larger than α1, with a sigmoid-like shape and
an inflexion point (top-left panel). The growth kinetics of the proliferative cells can be
characterized by three types of behavior (top-middle and top-right panels):

• a saturated growth with steadily decreasing speed with submodels (R1) and (R1,R3),
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• an exponential growth as long as γ > 0 with submodel (R1,R4),

• a logistic growth when the feedback term is strong enough (submodel (R1,R2)).

The growth kinetics of the total cell number behaves accordingly (bottom-right panel),
with three possible patterns: exponential growth, saturated growth for submodel (R1), and
steadiness for submodel (R1,R2). Finally, the proportion pC (bottom-left panel) may ei-
ther increase in a saturated manner (with steadily decreasing speed, submodels (R1) and
(R1,R3)), or in a sigmoid-like manner (with a change in the acceleration sign) if β1 or γ are
high enough. The inflexion point of t 7→ pC(t) can be computed from the analytical solution
(II.5):

p̄C = α1 + 2α2 − (β1 + γ)
2α2 − 2(β1 + γ) .

Note that according to the observed variables, the submodels cannot be distinguished from
one another, or, alternatively, different parameter values (within a same submodel) may lead
to identical outputs. Indeed, the changes in the precursor cell population are independent
of parameters α2, γ, and, more strikingly, parameters β1 and γ cannot be separated in the
analytical solution (II.5), leading to the same kinetic patterns as long as the combination
γ + β1 remains unchanged.

From Proposition II.1, we deduce that pC is a strictly increasing function, hence we can
invert the pC function and deduce that ∀t ∈ R+, ∃!p ∈ [0, 1), such that

t(p) = p−1
C (p) = −1

(α1 + β1 + γ) ln

 1− p
1− pα2−β1−γ

α1+α2

 .

II.2.2 Analysis of the extinction of the precursor cell population

To simplify the proofs, we will consider in the following that the initial condition is a de-
terministic value f0 ∈ N∗. All the proofs can be generalized to the random F0 case by
conditioning by the law of F0.

a) Analytical expressions in the linear case

When β1 is zero, the process X is linear, and we can compute the law of the extinction time.
In the case when, in addition, either α2 or γ is zero, or both are zero, the mean number of
proliferative cells at extinction time can also be computed.
In this subsection we will write XL

t = (FLt , CLt ) the solution of the SDE (II.1) when β1 = 0
and τ f0

L the associated extinction time of the population FLt :

τ f0
L := inf{t; FLt = 0|f0} . (II.6)

Note that the FL process is independent of the CL process. The jumping times Tk of FL,
for all k ∈ J0, f0 − 1K, are given by

Tk+1 := Tk + E (α1(f0 − k)) , (II.7)

with T0 = 0 by convention. Note that Tf0 = τ f0
L .
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Fig. II.2 Parameter influence on the outputs of the deterministic model.
From ODEs (II.3) and (II.4), we compute numerically (using the Python solver
odeint from the package scipy.integrate), for different parameter values, the different
model outputs as a function of time. Top-left panel: precursor cell number f(t).
Top-middle panel: proliferative cell number c(t), with a zoom insert in the top-right
panel. Bottom-left panel: proliferative cell proportion pC(t). Bottom-middle panel:
total cell number n(t). The legend insert specifies the (non-zero) parameter values
corresponding to each submodel and the color code. Blue line: submodel (R1) with
α1 = 20; green line: submodel (R1,R4) with α1 = 1 and γ = 50 ; black dashed
line: submodel (R1,R2) with α1 = 1 and β1 = 50 ; orange dashed line: submodel
(R1,R3) with α1 = 1 and α2 = 100; red dotted line: submodel (R1,R3) with α1 = 1
and α2 = 50. In each case, the initial number of precursor cells is fixed to f0 = 8.

Proposition II.2 (FLt and τ f0
L laws). Under Hypothesis II.1 and for all t ≥ 0, FLt |F0 = f0

follows a binomial law with parameters (n, p) = (f0, e
−α1t), and the extinction time τ f0

L , de-
fined by formula (II.6), follows a generalized Erlang law (or hypo-exponential law) of density:

f
τ
f0
L

(t) = α1f0e
−α1t(1− e−α1t)f0−11[0,+∞[(t),

such that E
[
τ f0
L

]
= 1
α1

f0∑
k=1

1
k
.

Proof. Let t ≥ 0 and f ∈ J0, f0K. Since Ft is autonomous and is a pure death process, we can
directly write the following forward Kolmogorov equation: for all f ∈ J0, f0K,

d

dt
P
[
FLt = f |F0 = f0

]
=

α1(f + 1)P
[
FLt = f + 1|F0 = f0

]
− α1fP

[
FLt = f |F0 = f0

]
. (II.8)

Solving by recurrence (II.8), we deduce that, for all f ∈ J0, f0K,

P
[
FLt = f |F0 = f0

]
=
(
f0
f

)
(e−α1t)f (1− e−α1t)f0−f .
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Note that P [Ft = 0|F0 = f0] = (1 − e−α1t)f0 which converges to 1 when t goes to infinity.
Hence, the process FL extincts almost surely (a.s.) when t goes to infinity, hence τ f0

L < ∞.
Before computing the law of τ f0

L , we can directly obtain its mean using the recursive expression
(II.7):

E
[
τ f0
L

]
=

f0−1∑
k=0

E [Tk+1 − Tk] =
f0−1∑
k=0

E [E (α1(f0 − k))] = 1
α1

f0∑
k=1

1
k
.

Then, using the same recursive expression (II.7), we deduce that τ f0
L (= Tf0) follows a gener-

alized Erlang law whose density function is:

f
τ
f0
L

(t) = 1t≥0

f0−1∑
i=0

f0−1∏
j 6=i,j=0

f0 − j
i− j

α1(f0 − i)e−α1(f0−i)t. (II.9)

Due to the specific form of the exponential rate in Eq. (II.9), we can simplify it further. As
f0−1∏

j 6=i,j=0
(f0 − j) = f0!

f0 − i
and

f0−1∏
j 6=i,j=0

(i− j) =
i−1∏
j=0

(i− j)×
f0−1∏
j=i+1

(i− j)

= i!(−1)f0−1−i
f0−1−i∏
j=1

j = (−1)f0−1−ii!(f0 − 1− i)!,

we deduce

f
τ
f0
L

(t) =α11t≥0

f0−1∑
i=0

f0!
i!(f0 − 1− i)! (−1)f0−1−ie−α1(f0−i)t

=α1f0e
−α1t1t≥0

f0−1∑
i=0

(
f0 − 1
i

)
(−e−α1t)f0−i−1

=α1f0e
−α1t(1− e−α1t)f0−11t≥0.

Figure II.3 illustrates both the precursor cell distribution at different times (left panel)
and the extinction time distribution of precursor cells (right panel) in the linear model
(R1,R3,R4). Thanks to the analytical solutions, one can easily compute a confidence inter-
val for the extinction time. For instance, we compute the time t = t0.95 for which extinction
has occurred with probability 0.95,

P [Ft0.95 = 0|F0 = f0] = 1− e−α1f0t0.95 ≥ 0.95⇒ t0.95 ≥ −
ln(0.05)
α1f0

≈ 3
α1f0

.

We now study the mean number of proliferative cells at the extinction time. We define
the stochastic processes Ck,j , for (k, j) ∈ N × N, as independent and identically distributed
Yule processes. We recall that the Yule process can be seen as the solution of

C0,0
t = 1 + Y

(
γ

∫ t

0
C0,0
s ds

)
,
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Fig. II.3 Illustration of Proposition II.2. Left-panel: Distribution of the ran-
dom variable FLt (binomial law) given the initial value F0 = 8. Each colored bar
plot/line corresponds to a different time (t=0,0.1,0.69,2.71,5.05, 10), see color code
in the legend insert. Right-panel: Extinction time of the precursor cells. The blue
solid line is the cumulative distribution function of the extinction time τ f0

L , while the
blue dashed line is the probability density function. The vertical red line indicates
the mean extinction time value. The horizontal black dashed line indicates the 95%
confidence level. The colored points indicate the time points corresponding to the
legend insert. In both panels, α1 = 1.

where Y is a Poisson process.
Since the process CLt is linear, hence is a branching process, it can be written as the sum of
independent and identically distributed elementary processes Ck,j (cell lineages, see Figure
II.4): for all t ≥ 0,

CLt =
F0∑
k=1

Ck,0
t−T 0

k
1t≥T 0

k

cell lineages generated by cell event R1

+
F0−1∑
k=0

Nk(t)∑
j=1

Ck,j
t−T j

k

1
t≥T j

k

cell lineages generated by cell event R3

, (II.10)

where we define, for all k ∈ J1, f0K,

• T 0
k := Tk (with Tk given by equation (II.7)), the k-th jumping time of the cell event R1

ofMFC .

• Nk(t), the number of occurrences of cell event R3 between Tk and Tk+1, for t ≥ Tk.
Note that

Nk(t) = Y3

(
α2

∫ t∧Tk+1

0
FLs ds

)
− Y3

(
α2

∫ Tk

0
FLs ds

)
. (II.11)

• for all j ∈ J1, Nk(t)K,
T jk := T j−1

k + E (α2(f0 − k)) , (II.12)
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the j-th jumping time of the cell event R3 occurring between the two random times Tk
and Tk+1.

Fig. II.4 Jumping times and cell lineages. Each cell lineage represents
schematically the random process Ck,j , arising either from the cell event R1
(green trees) or R2 (red trees), for the linear version of model MFC (submodel
(R1,R3,R4)). For all k ∈ J0, f0K, the random times Tk are defined by equation (II.7)
and, for all j ∈ J1, Nk(t)K where Nk(t) is given by equation (II.11), the random times
T jk are defined by equation (II.12). The times of the subsequent symmetric division
events following the T jk and Tk times are represented at arbitrary time points.

According to Proposition II.2, τ f0
L is a.s. finite. To take the expectation of CLt at time t = τ f0

L ,

we check that E
[
Ck,j
τ
f0
L −T

j
k

]
< ∞, for all k and j. For all t ≥ 0, Ck,jt is L1−integrable (as a

Yule process) with E
[
Ck,jt

]
= eγt. Note that

I :=
∫ +∞

0
eγtf

τ
f0
L

(t)dt = α1f0

∫ t

0
e(γ−α1)t(1− e−α1t)f0−1dt

= α1F0

f0−1∑
i=0

(
f0 − 1
i

)∫ +∞

0
e(γ−α1(i+1))tdt.

If Hypothesis II.3 holds, I <∞ and, since Ck,j is a positive increasing process, we deduce:

E
[
Ck,j
τ
f0
L −T

j
k

]
≤ E

[
Ck,j
τ
f0
L

]
= I <∞.

Then, taking the expectation of (II.10) at time t = τ f0
L , we obtain:

E
[
CL
τ
f0
L

]
=

f0∑
k=1

E
[
Ck,0
τ
f0
L −T

0
k

]
+
f0−1∑
k=0

E

Nk(τf0L )∑
j=1

Ck,j
τ
f0
L −T

j
k

 . (II.13)

In some cases, the latter formulas can be used to obtain the first moment of CL
τ
f0
L

.
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Proposition II.3 (First moment of CL
τ
f0
L

). 1. Under Hypothesis II.1, and supposing that
γ is zero,

E
[
CL
τ
f0
L

]
= f0(1 + α2

α1
).

2. Under Hypotheses II.1 and II.3, and supposing that α2 is zero,

E
[
CL
τ
f0
L

]
= 1 + α1

f0−1∑
k=1

(f0 − k)
f0−k−1∑
i=0

(
f0 − k − 1

i

)
(−1)i+1

γ − α1(i+ 1) .

Proof. When γ is zero, then for all t ≥ 0, for all k ∈ J1, f0K and for all j ∈ J1, Nk(τ f0
L )K,

Ck,jt = 1. We deduce directly from Eq. (II.13) that

E
[
CL
τ
f0
L

]
= f0 +

f0−1∑
k=0

E
[
Nk(τ f0

L )
]
. (II.14)

From Eq. (II.11), we have

E
[
Nk(τ f0

L )
]

= E
[
Y3

(
α2

∫ Tk+1

0
FLs ds

)
− Y3

(
α2

∫ Tk

0
FLs ds

)]

= E
[
Y3

(
α2

∫ Tk+1

Tk

FLs ds

)]
= E

[
α2

∫ Tk+1

Tk

FLs ds

]
,

by Poisson process property. Since for all t ∈ [Tk, Tk+1), FLt = f0−k, we deduce E
[
Nk(τ f0

L )
]

=

E [α2(f0 − k)(Tk+1 − Tk)]. Using (II.7), we deduce that E
[
Nk(τ f0

L )
]

= α2(f0−k)
α1(f0−k) = α2

α1
and con-

clude with (II.14).

When α2 is zero, Nk(t) is null for all t ≥ 0, hence we deduce directly from (II.13) that

E
[
CL
τ
f0
L

]
=

f0∑
k=1

E
[
Ck,0
τ
f0
L −Tk

]
. (II.15)

Since Tf0 = τ f0
L , we have Cf0,0

τ
f0
L −Tf0

= 1. Let k ∈ J1, f0−1K. Since τ f0
L −Tk

(law)=
∑f0
i=k+1 E (α1(f0 − i+ 1)) (law)=∑f0−k

i=1 E (α1i), using Proposition II.2, we deduce that the density function of τ f0
L − Tk is

f
τ
f0
L −Tk

(t) = α1(f0 − k)e−α1t(1− e−α1t)f0−k−11t≥0.

Then, conditioning Ck,0
τ
f0
L −Tk

by the law of τ f0
L − Tk, we deduce first

E
[
Ck,0
τ
f0
L −Tk

]
=
∫ +∞

0
E
[
Ck,0t

]
f
τ
f0
L −Tk

(t)dt,
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then, since E
[
Ck,0t

]
= eγt,

E
[
Ck,0
τ
f0
L −Tk

]
= α1(f0 − k)

∫ +∞

0
e(γ−α1)t(1− e−α1t)f0−k−1dt

= α1(f0 − k)
f0−k−1∑
i=0

(
f0 − k − 1

i

)∫ +∞

0
(−1)ie(γ−α1(i+1))tdt

= α1(f0 − k)
f0−k−1∑
i=0

(
f0 − k − 1

i

)
(−1)i+1

γ − α1(i+ 1) ,

which ends the proof using (II.15).

The influence of each parameter on the mean number of proliferative cells at the extinction
time, E

[
CL
τ
f0
L

]
, for the linear model (R1,R3,R4), are illustrated in Figure II.5. We observe

that CL
τ
f0
L

grows without bound as the symmetric division rate γ approaches α1 (submodel
(R1,R4)), while it grows linearly as a function of the asymmetric division rate α2 (submodel
(R1,R3)). Both behaviors are consistent with the deterministic results (Figure II.2).

Remark II.2. In the case when both α2 > 0 and γ > 0, a simple analytical formula cannot
be obtained for the first moment of CL

τ
f0
L

since it is tricky to deal with expectation in the second
term of relation (II.10).
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Fig. II.5 Illustration of Proposition II.3. Mean number of proliferative cells at
the extinction time, E

[
CL
τ
f0
L

]
for different parameter values. Orange line: E

[
CL
τ
f0
L

]
with respect to γ in submodel (R1,R4) (α2 = 0). Blue line: E

[
CL
τ
f0
L

]
with respect

to α2 in submodel (R1,R3) (γ = 0). Green dashed line: both α2 and γ are zero,
hence E

[
CL
τ
f0
L

]
= f0 = 8. In all cases, α1 = 1.

b) Upper bound of the stochastic model

In the general case, we cannot obtain analytical expressions for the extinction time, and we
will rather use numerical simulations. To control the numerical error, we need a tractable
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upper bound of the stochastic model introduced in Eq. (II.1), which is obtained in this sub-
section.

Let LsupF and LsupC be the following operators:
LsupF φ(f) = α1f [φ(f − 1)− φ(f)] ,

LsupC φ(c) = [(α1 + β1 + α2)f0 + γc] [φ(c+ 1)− φ(c)] .
for all φ bounded functions, for all f, c ∈ N.

F0

F

T ime

C

T ime

Fig. II.6 Schematic trajectories of the coupled processes (F sup, Csup) and X =
(F,C). Left panel: number of precursor cells F (in green) and upper bound F sup
(in blue). Right panel: number of proliferative cells C (in green) and upper bound
Csup (in blue).

Proposition II.4 (Coupling). For the X process, there exist processes F sup and Csup of
generator LsupF and LsupC , respectively, such that for all t ∈ R+, F supt ≥ Ft and Csupt ≥ Ct a.s.

Figure II.6 illustrates (schematically) the upper bound (F sup, Csup) of the process X =
(F,C) solution of modelMFC . This upper bound is obtained from an appropriate coupling
of both processes, which may or may not jump together, and which are such that when
F sup = F (resp. Csup = C), the process F sup (resp. Csup) jumps after (resp. before) the
process F (resp. C), which ensures keeping the order F sup ≥ F (resp. Csup ≥ C). The
coupling is explicit in the proof of Proposition II.4. We define F sup and Csup as the solutions
of the SDEs:

F supt = f0 − Y1

(
α1

∫ t

0
F sups ds

)
,

Csupt = Y1 (α1f0t) + Y2 (β1f0t) + Y3 (α2f0t) + Y4

(
γ

∫ t

0
Csups ds

)
, (II.16)
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where the Poisson processes (Yi)i=1..4 are the same as those in Eq. (II.1). By additivity of
independent Poisson processes, we deduce that the infinitesimal generator of F sup and Csup
are LsupF and LsupC , respectively.

Remark II.3. The Csup process is linear, as the CL process introduced in subsection a). It
turns out that the Csup process yields a much more tractable analytical expression to control
the mean number of proliferative cells at the extinction time.

To prove the upper bound for the C process, we first start by a lemma.

Lemma II.1. For i = 1, 2, 3, let (U ik)k≥0 be the sequences of jumping times associated with
the counting processes

t 7→ Y1

(∫ t

0
α1Fsds

)
, t 7→ Y2

(∫ t

0
β1

FsCs
Fs + Cs

ds

)
, and t 7→ Y3

(∫ t

0
α2Fsds

)
respectively, and, for i = 1, 2, 3, let (V i

k )k≥0 be the sequences of jumping times associated with
the counting processes

t 7→ Y1 (α1f0t) , t 7→ Y2 (β1f0t) , and t 7→ Y3 (α2f0t)

respectively. We also define the process ZUt :=
3∑
i=1

∑
k≥1

1{U i
k
≤t} and the process ZVt :=

3∑
i=1

∑
k≥1

1{V i
k
≤t}.

For all t ≥ 0,
ZUt ≤ ZVt , a.s. (II.17)

Proof. (Proof of Lemma II.1) By definition of a standard Poisson process, there exists a
sequence of jumping times (Sik)k≥0 for each i = 1, 2, 3 such that

Yi(t) =
∑
k≥1

1{Si
k
≤t}.

By definition of (Sik)k≥0 and (U ik)k≥0, for each i = 1, 2, 3 and for all k ≥ 0, we have

∫ U1
k+1

U1
k

α1Fsds = S1
k+1 − S1

k , (II.18)

∫ U2
k+1

U2
k

β1
FsCs
Fs + Cs

ds = S2
k+1 − S2

k ,∫ U3
k+1

U3
k

α2Fsds = S3
k+1 − S3

k , (II.19)

Also, by definition of (Sik)k≥0 and (V i
k )k≥0, for each i = 1, 2, 3 and for all k ≥ 0, we have

V 1
k+1 − V 1

k =
S1
k+1 − S1

k

α1f0
, V 2

k+1 − V 2
k =

S2
k+1 − S2

k

β1f0

and V 3
k+1 − V 3

k =
S3
k+1 − S3

k

α2f0
. (II.20)
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From (II.18)-(II.19), we obtain

S1
k+1 − S1

k ≤ α1f0(U1
k+1 − U1

k ), S2
k+1 − S2

k ≤ β1f0(U2
k+1 − U2

k )
and S3

k+1 − S3
k ≤ α2f0(U3

k+1 − U3
k ). (II.21)

Combining (II.20) and (II.21) , we conclude that for each i = 1, 2, 3

V i
k+1 − V i

k ≤ U ik+1 − U ik.

We obtain that, for all t ≥ 0, ZUt ≤ ZVt a.s. , by counting process definition.

We can now proceed to the proof of Proposition II.4.

Proof. (Proof of Proposition II.4) The C and Csup processes start from the same state:
C0 = Csup

0 = 0. By Poisson process definition and since C verifies Eq. (II.1), we have

Ct = ZUt + Y4

(
γ

∫ t

0
Csds

)
. (II.22)

In the same way, since Csup verifies (II.16), we have

Csup
t = ZVt + Y4

(
γ

∫ t

0
Csup
s ds

)
. (II.23)

Let Q be the first time when the Csup and C processes are distinct:

Q := inf (t ≥ 0, Csup
t 6= Ct) ,

and, let RQ, be the first time when the Csup and C processes meet again:

RQ := inf (t ≥ Q,Csup
t = Ct) .

Note that at t = Q, Y4
(
γ
∫ t

0 Csds
)

= Y4
(
γ
∫ t

0 C
sup
s ds

)
. Since C and Csup have jumps of size

one, between Q and RQ, one of the two processes stays necessarily over the other one. Using
inequality (II.17) and equations (II.22) and (II.23), we deduce that for all t ∈ (Q,RQ),

Csup
t > Ct.

Hence, for all t ∈ (Q,RQ),

Y4

(
γ

∫ t

0
Csup
s ds

)
≥ Y4

(
γ

∫ t

0
Csds

)
.

From this and from inequality (II.17), we deduce that for all t ∈ (0, RQ),

Csup
t ≥ Ct.

By strong Markov property, we conclude that the above inequality is valid for all times
t ∈ R+.
In the same way as in Eq. II.6, we obtain the upper bound for the F process. Using the
same notation as above, we can write that

Ft = f0 −
∑
k≥1

1{U2
k
≤t} − Y1

(
α1

∫ t

0
Fsds

)
.
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Let QF be the first time when the F sup and F processes are distinct:

QF := inf (t ≥ 0, F sup
t 6= Ft) ,

and, let RF
QF

, be the first time when the F sup and F processes meet again:

RFQF := inf
(
t ≥ QF , F sup

t = Ft
)
.

Note that at t = QF , Y1
(
α1
∫ t

0 Fsds
)

= Y1
(
α1
∫ t

0 F
sup
s ds

)
. Since F and F sup have jumps of

size one, between QF and RF
QF

, one of the two processes stays necessarily over the other one.
Hence, we deduce that for all t ∈ (0, RF

QF
),

F sup
t ≥ Ft.

By strong Markov property, we conclude that the above inequality is valid for all times
t ∈ R+.

We now assess the first moment of the extinction time of the upper bound process. In
the same way, we define τ sup as

τ sup := inf {t, F supt = 0|F sup
0 = f0} .

Proposition II.5 (First moment of Csup
τsup). Under Hypotheses II.1 and II.3, we have:

• if γ > 0:

E [Csupτsup ] = (α1 + β1 + α2)f0
γ

α1f0

f0−1∑
k=0

(
f0 − 1
k

)
(−1)k+1 1

γ − α1(k + 1) − 1

 (II.24)

• if γ = 0:

E [Csupτsup ] = α1 + β1 + α2
α1

f0

f0∑
i=1

1
i
. (II.25)

Proof. Since τ sup and Csup are independent, we deduce by conditioning with respect to τ sup
that

E [Csupτsup ] =
∫ +∞

0
E [Csupt ] fτsup(t)dt, (II.26)

where fτsup is the density probability of τ sup.
First, we suppose that γ > 0. Hence, Csup is a birth process with immigration and we use
the classical result that Csupt follows a negative binomial law BN

(
α1+β1+α2

γ f0, e
−γt
)
. In

particular, for all t ≥ 0,

E [Csupt ] = α1 + β1 + α2
γ

f0(eγt − 1). (II.27)

Since F sup is linear, we apply Proposition II.2 and obtain

fτsup(t) = α1f0e
−α1t(1− e−α1t)f0−11[0,+∞)(t). (II.28)
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Then, using (II.27) and (II.28), we deduce from (II.26) that

E [Csupτsup ] = α1
α1 + β1 + α2

γ
f2

0

∫ ∞
0

(eγt − 1)e−α1t(1− e−α1t)f0−1dt <∞

under Hypothesis II.3. We have

α1f0

∫ ∞
0

e−α1t(1− e−α1t)f0−1dt =
[
(1− e−α1t)f0

]∞
0

= 1, (II.29)

and

∫ ∞
0

e(γ−α1)t(1− e−α1t)f0−1dt =
f0−1∑
k=0

(
f0 − 1
k

)
(−1)k

∫ ∞
0

e(γ−α1(k+1))tdt

=
f0−1∑
k=0

(
f0 − 1
k

)
(−1)k+1 1

γ − α1(k + 1) . (II.30)

From Eq. (II.29) and (II.30), we deduce relation (II.24).
If γ = 0, then Csup is a pure immigration process and follows a Poisson law P ((α1 + β1 + α2)f0t)
at time t ≥ 0. Using the same approach, we obtain that

E [Csup
τ sup ] =

∫ +∞

0
(α1 + β1 + α2)f0tfτ sup(t)dt = (α1 + β1 + α2)f0E [τ sup] .

We obtain Eq. (II.25) using Proposition II.2.

We immediately deduce the following corollary

Corollary II.1. Under Hypothesis II.1, we have E
[
τ f0
]
<∞. In addition, under Hypothesis

II.3, we have E [Cτf0 ] <∞.

Proof. Since, according to Proposition II.4, for all t ≥ 0, F sup
t ≥ Ft, we first deduce that,

necessarily, τ sup ≥ τ f0 . Then, since, according to Proposition II.2, E [τ sup] < ∞, we can
conclude that E

[
τ f0
]
<∞.

In the same way, since Csup and C are both increasing processes, we obtain from Proposition
II.4, that

Csup
τ sup ≥ Cτ sup ≥ Cτf0 .

Using Proposition II.5, we conclude that E [Cτf0 ] <∞.

c) Numerical scheme for the mean extinction time and mean number of prolif-
erative cells at the extinction time

Let the domain D be defined as
D := J1, f0K× N. (II.31)

We can compute the moment of τ f0 and Cf0
τ using the martingale problem (II.2). We

introduce the following problem: find the value g(f0, 0) where g is solution of

∀(f, c) ∈ D, Lg(f, c) = α and g(0, c) = g0(c), ∀c ∈ N (II.32)

where the g0 function and α scalar are to be chosen according to whether we want to obtain
E
[
τ f0
]
or E [Cτf0 ].
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1. For E
[
τ f0
]
, we take, for all c ∈ N, g0(c) = 0 and α = −1.

2. For E [Cτf0 ], we take, for all c ∈ N, g0(c) = c and α = 0.

We detail formally why E
[
τ f0
]

= g(f0, 0). Instantiating the martingale problem (II.2) at
time t = τ f0 and taking the expectation, we obtain:

E [g(Xτf0 )] = E [g(X0)]− E
[∫ τf0

0
Lg(Xs)ds

]
.

Note that, for all s ∈ (0, τ f0), Xs ∈ D. Since α = −1, Lg = −1 for all (f, c) ∈ S, and, since
g(XτF0 = (0, Cτf0 )) = 0, we deduce that E

[
τ f0
]

= E [g(X0)] = g(f0, 0).
Actually, the martingale problem (II.2) is only valid for compactly supported functions, which
is not necessarily the case for g. Nevertheless, we are going to show directly that the solution
of system (II.32) on a truncated domain converges to E

[
τ f0
]
. The truncated problem is also

motivated by numerical issues.
We can notice that system (II.32), which is similar to the Kolmogorov backward equation,
is unclosed, and there exists no analytical solution. We can obtain a numerical estimate for
the scalar g(f0, 0) using a domain truncation method, as proposed in [58, 59].

Domain truncation method
We introduce the killed chain Z, similar toX onD, whose transition matrixQZ := (qZ(x, y))x,y∈S
coincides with Q on D:

qZ(x, y) = q(x, y),∀x ∈ D, y ∈ S, and qZ(x, y) = 0, ∀x /∈ D, y ∈ S.

Lemma 2.4 of [59] ensures us that the chains X and Z are identical up to the first exit time
from domain D, i.e. at time t = τ f0 .
In a second step, we introduce the truncated state space Sr (following [59]), defined as: for
all r ∈ N∗,

Sr := J0, f0K× J0, rK ∪ {(0, r + 1), (1, r + 1)}\ {(0, 0)} (II.33)

and the truncated domain Dr := Sr ∩ D.
We also construct the Markov chain Zr, similar to Z on domain Dr and killed outside Dr.
The chains Z and Zr are identical up to the first exit time from domain Dr,

τ f0
r := inf (t such that Zrt /∈ Dr) = τ f0 ∧ τSr ,

where τSr := inf (t such that Zrt /∈ Sr) . (II.34)

We include the state (0, r+1), (1, r+1) in domain Sr to ensure that τSr 6= τ f0 . In Figure II.7
we draw the different domains D, Sr,Dr, and we sketch typical trajectories of the X process
and the auxiliary processes that we have defined on each domain, namely Z and Zr. The
Z (resp. Zr) process coincides with X as long as X stays in domain D (resp. Dr) and is
stopped when X leaves domain D (resp. Dr).

Since Sr is a strictly increasing sequence of sets such that ∪rSr = S, τSr goes to infinity
a.s. when r goes to infinity. Since, according to Corollary II.1, τ f0 < +∞, τ f0

r converges to
τ f0 a.s. when r goes to infinity. Using that C is an increasing process, we also deduce the
a.s. convergence of the sequence of random variables C

τ
f0
r

to Cτf0 when r goes to infinity.
We show in the next proposition that the convergence holds in mean for both τ f0

r and C
τ
f0
r
.
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D

C

F

Sr

Dr

X/Z

X/Z/Zr

X

X/Z/Zr

X

X/Z/Zr

F0

Fig. II.7 Domains and processes used in the finite state projection
method, related to Proposition II.6. In shaded gray, we plot the infinite do-
main D defined in Eq. (II.31). The solid blue line delimits the boundary of domain
Sr, defined in Eq. (II.33). The red dashed line delimits the boundary of domain Dr,
corresponding to the intersection of D and Sr. The blue, green and orange lines
illustrate three typical trajectories of the processes X,Z,Zr.

Proposition II.6 (Domain truncation relative error). Let p ∈ N∗, such that E[(Cτf0 )p] <∞,
and, let r ∈ R∗+ and εr := E[(C

τf0 )p]
rp . Then, we have

|E
[
τ f0
]
− E

[
τ f0
r

]
|

E [τ f0 ] ≤ εr and
|E
[
Cτf0

]
− E

[
Cτr

f0

]
|

E
[
Cτf0

] ≤ εr.

Proof. We combine the study of τ f0
r and C

τ
f0
r

by introducing h(τ f0
r ), where the h function is

either h(x) = x or h(x) = Cx. According to Corollary II.1, we get E
[
h(τ f0

r )
]
< ∞ for both

cases. As P
[
τSr = τ f0

]
= 0, we can write that

P
[
τ f0
r = τ f0

]
= 1− P

[
τ f0
r = τSr

]
. (II.35)



64 Chapter II. Modeling the ovarian follicle activation

Conditioning E
[
h(τ f0

r )
]
with respect to τ f0

r and using its definition (see (II.34)), we deduce:

E
[
h(τ f0

r )
]
= E

[
h(τ f0

r )|τ f0
r = τ f0

]
P
[
τ f0
r = τ f0

]
+ E

[
h(τ f0

r )|τ f0
r = τSr

]
P
[
τ f0
r = τSr

]
= E

[
h(τ f0)

]
P
[
τ f0
r = τ f0

]
+ E [h(τSr)]P

[
τ f0
r = τSr

]
.

We have τ f0 ≥ τ f0
r for all r ≥ 0. Hence, h(τ f0) ≥ h(τ f0

r ) and we obtain:

|E
[
h(τ f0)

]
− E

[
h(τ f0

r )
]
| = E

[
h(τ f0)

]
(1 − P

[
τ f0
r = τ f0

]
) − E [h(τSr)]P

[
τ f0
r = τSr

]
.

From equation (II.35), we deduce first

|E
[
h(τ f0)

]
− E

[
h(τ f0

r )
]
| =

(
E
[
h(τ f0)

]
− E [h(τSr)]

)
P
[
τ f0
r = τSr

]
,

then
|E
[
h(τ f0)

]
− E

[
h(τ f0

r )
]
|

E [h(τ f0)] ≤ P
[
τ f0
r = τSr

]
.

Note that P
[
τ f0
r = τSr

]
= P

[
C
τ
f0
r

= r
]

= P
[
C
τ
f0
r
≥ r

]
. Since C is increasing, C

τ
f0
r
≤ Cτf0 ,

hence we obtain
P
[
τ f0
r = τSr

]
≤ P [Cτf0 ≥ r] .

Finally, Chebychev inequality give us that,

P
[
τ f0
r = τSr

]
≤ E[(Cτf0 )p]

rp
,

which ends the proof.

Pseudo-code
According to Proposition II.4, we first have that

CτF0
≤ Csup

τ sup a.s. ,

then together with Proposition II.6 for p = 1, we obtain

|E
[
τ f0
]
− E

[
τ f0
r

]
|

E [τ f0 ] ≤ A

r
and

|E
[
Cτf0

]
− E

[
Cτr

f0

]
|

E
[
Cτf0

] ≤ A

r
,

where, if γ > 0,

A = (α1 + α2 + β1)f0
γ

α1f0

f0−1∑
k=0

(
f0 − 1
k

)
(−1)k+1 1

γ − α1(k + 1) − 1

 (II.36)

or, if γ = 0,

A = α1 + β1 + α2
α1

f2
0

f0−1∑
i=0

(
f0 − 1
i

)
(−1)i

(i+ 1)2 . (II.37)
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We design the following algorithm to compute a numerical estimate of g(f0, 0):
Fix f0, g0, α, the parameter set θ = (α1, α2, β1, γ) and the tolerance error ε;
Compute r = A

ε from equation (II.36) or equation (II.37) ;
Initialize gr(f, r) = 0 for all f ∈ J0, f0K;
for c from r − 1 to 0 do

gr(0, c)← g0(c) ;
for f from 1 to f0 do

gr(f, c)←
−α+(α1f+β1

fc
f+c )gr(f−1,c+1)+(γc+α2f)gr(f,c+1)
γc+(α1f+β1

fc
f+c )+α2f

;

end
end
Return gr(f0, 0);

Algorithm 1: Numerical estimate of g(f0, 0)

We apply Algorithm 1 to explore the influence of parameters on both the mean extinction
time of the precursor cells, E

[
τ f0
]
, and the mean number of proliferative cells at that time,

E [Cτf0 ] for the nonlinear model.
On the left panel of Figure II.8, we can observe that E

[
τ f0
]
decreases like a logistic function

with respect to β1 (in log scale), with a sharp transition for β1 ≈ α1. When β1 tends to zero
(β1 � α1 = 1), the mean extinction time E

[
τ f0
]
converges to E

[
τ f0
L

]
. On the contrary, when

β1 is large (β1 � α1), the mean extinction time E
[
τ f0
]
converges to E [E ((α1 + α2)f0)] =

1
(α1+α2)f0

, which corresponds to the mean time of the first event (in other words, when β1 is
large, cell event R2 becomes instantaneous). The various parameter configurations shown in
this panel lead to the conclusion that the parameter that affects the most the mean extinction
time E

[
τ f0
]
is the auto-amplified transition rate β1, while the division rates α2 and γ have

relatively less effect. Moreover, it is clear from the analytical solutions of the linear model,
that the initial number of precursor cells f0 and the spontaneous transition rate α1 have a
major impact on E

[
τ f0
]
.

A logistic-shaped function is observed as well for E [Cτf0 ] (middle panel of Figure II.8) when
β1 is tuned (log scale), with a sharp transition around β1 ≈ α1. When β1 is small, cells have
time to divide before extinction (leading to a higher level of E [Cτf0 ]) while when β1 is large,
the main cell event is R2 and few cells can divide before extinction, the limit value being
f0 + α2

α1+α2
when β1 →∞.

On the right panel of Figure II.8, we plot the mean number of proliferative cells at the
extinction time as a function of the mean extinction time, when β1 is tuned. These two
quantities appear to be roughly linearly correlated, with a slope that depends on the other
parameter values. The inserted zoom around (0, f0) shows that submodel (R1,R2,R3) can
surprisingly lead to a higher mean number of proliferative cells than submodel (R1,R2,R4)
(with unchanged α2 and γ values). This phenomenon arises for a large β1 value (and small
mean extinction time). In such a case, an asymmetric division in submodel (R1,R2,R3) may
arise before a spontaneous transition (with probability α2

α1+α2
), while a symmetric division in

submodel (R1,R2,R4) can only arise after a first spontaneous transition, yet is unlikely to
occur for large β1 and fast extinction. However, for small feedback rate β1, the possibility of
symmetric divisions leads to significantly more proliferative cells at the extinction time, as
expected.
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Fig. II.8 Mean extinction time and mean number of proliferative cells at the ex-
tinction time. Using Algorithm 1 with ε = 10−2, we compute the mean extinction
time and the mean number of proliferative cells at the extinction time. Left panel:
mean extinction time as a function of β1. Middle panel: mean number of prolifera-
tive cells at the extinction time as a function of β1. Right panel: Mean number of
proliferative cells as a function of the mean extinction time, when β1 varies. In each
panel, we use four different parameter configurations as follows. In all cases, f0 = 8
and α1 = 1. Black solid line: submodel (R1,R2,R3) with α2 = 10. Blue solid line:
submodel (R1,R2,R3) with α2 = 0.01. Green solid line: submodel (R1,R2,R4)
with γ = 0.01. Red dashed line: model MFC with α2 = γ = 0.01. The orange
dotted horizontal lines represent the mean extinction time and number of prolifera-
tive cells at the extinction time when β1 = 0 (applying formulas in Proposition II.3
or, for submodel (R1,R3,R4), simulating the stochastic process). The remaining
colored dotted horizontal lines correspond to the mean extinction time and number
of proliferative cells at the extinction time when β1 → ∞. The legend insert on
the top of the panels specifies the color code. Dotted red: model (R1,R2,R3,R4);
blue: model (R1,R2,R3) with α2 = 0.01; green: model (R1,R2,R4); black: model
(R1,R2,R3) with α2 = 10. For the mean extinction time, the blue and red dotted
lines are superimposed.



II.3 Parameter calibration 67

II.3 Parameter calibration

In this section, we calibrate the model parameters using a likelihood approach. We first
describe the available experimental dataset, as well as in-silico datasets that we use as a
benchmark for our methodology. Then we derive a likelihood function based on the embed-
ded Markov chain from the underlying continuous-time Markov process. We explain how
this likelihood is specifically adapted to the data, which are time-free measurements of cell
numbers. Finally, we both present the estimation results for each submodel derived from
model (MFC) and carry out a comprehensive comparison between the different models. In
addition, we manage to retrieve hidden kinetic information and assess transit times with given
confidence intervals, thanks to a practical parameter identifiability analysis as proposed in
[138].

II.3.1 Dataset description

Experimental dataset

Follicles undergoing the activation process have been classified according to three types
[119, 136, 116, 137]. Primordial follicles (Type I or B) have either not yet or just initiated acti-
vation; they are composed of a single layer of flattened cells surrounding the oocyte. Primary
follicles (Type II or C) have completed initiation; they only contain cuboidal (transitioned)
somatic cells organized in less than two layers (this means that some follicles are strictly
mono-layered, while in others an extra partially fulled layer is being built-up). In between
Types I and II lies a class of transitory follicles (Type IA or B/C), with a mixture of flattened
and cuboidal cells coexisting within a single layer. The progression from Type I to Type II
is accompanied with a more or less pronounced increase in the total cell number (flattened
plus cuboidal cells) and enlargement in the oocyte (and follicle) diameter (see bottom-right
panel of Figure II.9).

We have made use of a dataset acquired in sheep fetuses [116, 117] (courtesy of Ken
McNatty), which provides us with precursor and proliferative cell numbers in a sample of
follicles distributed into the three activation steps. The dataset is subdivided into two sub-
sets corresponding to two different sheep strains : the “wild-type” Romney strain and the
“mutant” Booroola strain. The latter is characterized by a natural mutation affecting the
receptor to growth factor BMP15 and resulting in the alteration of follicle development (see
the Introduction section).

We denote respectively by xWT and xM the Wild-Type and Mutant subsets such that,
for l ∈ B := {WT,M}:

xl = (xi)i∈J1,N lK ,

where N l is either 90 (Wild-Type) or 81 (Mutant), and each element xi is a vector consisting
of the number of precursor and proliferative cells. More specifically, the measures consist
of the cell numbers counted on the largest 2D cross-section of histologically fixed follicles
of type I, IB or II. This 2D number can be correlated with the total 3D cell number from
standard stereological considerations [116]. In order to deal with a final cell number as close
as possible to the number reached at the first time when all flattened cells have transitioned
to cuboidal cells (hence to the extinction time in the model), we have only retained the
strictly mono-layered type II follicles. Yet, due to the oocyte enlargement and the resulting
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Fig. II.9 Description of the experimental dataset. Top-left, top-right and
bottom-left panels: experimental data points projected onto three different phase
planes, respectively: (F,C), (C, pc) and (N, pC), for both the Wild-Type (xWT )
and Mutant (xM ) subsets. Red points: primary follicles, green points: transitory
follicles, blue points: primary follicles. Bottom-right panel: histological slices illus-
trating the different steps of activation (from left to right: primordial, transitory
and primary follicles). Experimental dataset: courtesy of Ken McNatty; histological
images: courtesy of Danielle Monniaux.

increased capacity of the first layer, one cannot preclude that a significant amount of cuboidal
cells have been generated after the end of the transition period.

Figure II.9 illustrates the repartition of the data points according to the follicle type and
sheep strain in each phase plane (C, F ) (C, pC), (N , pC).

In silico datasets
In addition to the experimental dataset, we have constructed in silico datasets generated from
the simulation of five different submodels: (R1,R3), (R1,R4), (R1,R2,R3), (R1,R2,R4) and
(R1,R3,R4). We recall that the different submodels are named by the reactions which have
corresponding positive reaction rates. All the submodels considered are thus nested models,
or reduced model compared to the full model (MFC). For each submodel, we select two
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parameter sets differing by contrasted values in the division rates α2 or γ and/or transition
rate β1. We obtain the corresponding 10 datasets by simulating 1, 000 trajectories from the
SDE (II.1), with the Gillespie algorithm [61], starting from the initial condition (F0, 0) at
time t = 0 up to the time when C(t) = 31 (the value C(t) = 31 corresponds to the maximal
number of cuboidal cells observed in the experimental dataset). The initial random variable
F0 follows a truncated Poisson law of parameter µ (see Eq.(II.40)). For each trajectory, we
select randomly one point (f, c) among the state space points reached by the trajectory, so that
each in-silico datasets is composed of N = 1, 000 points. We choose a uniform distribution
despite pC values exceeding 0.50 are rarely observed (see Figure II.9). The parameter values
are summarized in Table II.1.

α1 β1 α2 γ µ

(R1,R3) Dataset x(R1,R3),1 1 0 0.7 0 5
Dataset x(R1,R3),2 1 0 0.007 0 5

(R1,R4) Dataset x(R1,R4),1 1 0 0 0.7 5
Dataset x(R1,R4),2 1 0 0 0.007 5

(R1,R2,R3) Dataset x(R1,R2,R3),1 1 0.01 0.07 0 5
Dataset x(R1,R2,R3),2 1 100 0.07 0 5

(R1,R3,R4) Dataset x(R1,R3,R4),1 1 0 0.007 0.7 5
Dataset x(R1,R3,R4),2 1 0 0.007 0.07 5

(R1,R2,R4) Dataset x(R1,R2,R4),1 1 0.01 0 0.07 5
Dataset x(R1,R2,R4),2 1 100 0 0.07 5

Table II.1 – Parameter sets used to generate the in silico datasets

We note

S := {((R1,R3), i), i = 1, 2} ∪ {((R1,R4), i), i = 1, 2} ∪ {(R1,R2,R3), i), i = 1, 2}
∪ {((R1,R2,R4), i), i = 1, 2} ∪ {((R1,R3,R4), i), i = 1, 2}

the set of all the in silico datasets.
In the sequel (see in particular Figure II.11 and II.12) these datasets will be used as

benchmark tools for the parameter identifiability study and the statistical comparison be-
tween the submodels (and complete model). In any case, the set of estimated parameters will
match the set of cell events included in the model used to generate the in silico dataset. For
instance, we will estimate the values of parameters α2 and γ on the two datasets generated
from submodel (R1,R3,R4).

II.3.2 Likelihood method

Since the experimental dataset is made of time-free observations, we are going to confront
the model to the data using only the information on some state space values taken by the
process, without their corresponding time information. This notion is intrinsically related
to the embedded Markov chain which we detail below. We will use this Markov chain to
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compute a likelihood function. Note that the proliferative cell population increases by one
cell at each event (R1, R2, R3 or R4), while the precursor cell population can either remain
constant (R3 or R4) or decrease by one (R1 or R2). The proliferative cell population C can
thus be used as an event counter. Indeed, as a continuous-time Markov process, X (defined
in Eq. II.1) can be decomposed into an embedded Markov chain (Fn, Cn)n∈N and a sequence
of random time jumps (τn)n∈N with

τn+1 = τn + E
(

(α1 + α2)Fn + β1
FnCn
Fn + Cn

+ γCn

)
, τ0 = 0.

Note that the sequence of time jumps (τn)n∈N corresponds exactly to the sequence of time
jumps associated with process C, and

C(t) =
∑
n∈N

1τn≤t , Cn = n .

Thus, given that Cn = n is deterministic, it is clear that the precursor cell population Fn
(alone) is also a (non-homogeneous) Markov chain. To clarify the link with the data, we
will index the embedded chain Fn by the number of proliferative cells c, rather than by the
number of events that occurred: let Fc be the random variable corresponding to the number
of precursor cells given that there are c ∈ N proliferative cells. According to the dichotomy
between the two division events (R3, R4) and the two transition events (R1, R2), we deduce
the law of Fc at the “pseudo-time” C = c from the law of Fc−1 at the “pseudo-time” C = c−1
as follows: for all (f, c) ∈ S,

P [Fc = f ] = qf+1,f (c− 1)P [Fc−1 = f + 1]
transition

+ qf,f (c− 1)P [Fc−1 = f ]
asymmetric/symmetric division

, (II.38)

where

qf+1,f (c) =
α1(f + 1) + β1

(f+1)c
f+1+c

(α2 + α1)(f + 1) + γc+ β1
(f+1)c
f+1+c

,

qf,f (c) = α2f + γc

(α2 + α1)f + γc+ β1
fc
f+c

. (II.39)

Hence (Fc)c∈N is a non-homogeneous discrete time Markov chain. Notice that the law of CτF0 ,
the number of proliferative cells at the extinction time of the precursor cells, corresponds to
the law of the first “pseudo-time” c such that Fc = 0, e.g. CτF0 = inf{c ∈ N∗, Fc = 0}. Hence,
one can use the same estimates (Eq. (II.36) or Eq. (II.37)) used in the previous section to
analyze the law of CτF0 , or to reconstruct a numerical approximation of the mean of CτF0 .

In addition to Eq. (II.38), to compute the law of (Fc), we need to specify an initial
condition F0. We suppose that the initial number of precursor cells follows a truncated
Poisson law of parameter µ ∈ R+ defined as, for all f ∈ N∗,

P [F0 = f ] = µf

(eµ − 1)f ! . (II.40)

Then, we can use Eq. (II.38) to compute P[Fc = f ] by recurrence from the initial probability
vector (P[F0 = i])i∈J0,c+fK. Hence, we have built a discrete time Markov chain (Fc)c∈N from
model (MFC) adapted to our time-free observations.
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As can be seen from Eq. (II.39), the timescale cannot be inferred, so that we fix arbitrarily
α1 = 1, whatever the dataset, to obtain dimensionless parameters. The time unit of the
remaining parameters is thus relative to the timescale of one spontaneous transition event.
As far as the experimental and in silico datasets, except α1, the estimated parameter values
may depend on the specific dataset (experimental or in silico), which we highlight by the
following notations for the parameter sets: θl = (βl1, αl2, γl, µl) ∈ Θ ⊂ (R+)3 × [1,+∞),
l ∈ B ∪ S.

Finally, we suppose that all data points are independent of one another, and that the
observations are free of measurement errors, and we ignore inter-individual variability.

We obtain the following likelihood function for both the experimental and in silico datasets:
for l ∈ B ∪ S,

L(xl; θ) := P
[
xl|θ

]
=

N l∏
i=1

P [Fci = fi|θ] .

For each submodel m ∈ {(R1,R4), (R1,R3), ...} described in the previous section, the
optimal parameter values are given by the maximum likelihood estimator θ̂lm (MLE), which
we compute by minimizing the negative log-likelihood, for l ∈ B ∪ S:

θ̂lm := arg min
θ∈Θm

(
− log

(
L(xl; θ)

))
,

where Θm is a subset of Θ constructed by fixing all the parameter sets related to the non-
present events to the singletons {0}: for instance, in submodel (R1,R4), we have Θ(R1,R4) =
{0} × {0} × R+ × [1,+∞).
To compute the minimum, we use a derivative-free optimization algorithm: the Differential
Evolution (DE) algorithm [146]. In the following, we describe the whole procedure for the
complete model m = (R1,R2,R3,R4) with the experimental dataset (l ∈ B). The algorithm
starts from an initial population in which each individual is represented by a set of real num-
bers (β1, α2, γ, µ). Then, the population evolves along successive generations by mutation
and recombination processes. At each generation, the likelihood function is used to assess
the fitness of the individuals, and only the best individuals are kept in the population. We
have set the intrinsic optimization parameters as follows: the initial population has a size
of 20 individuals, and the probability of mutation and crossing-over equals to 0.8 and 0.7
respectively. The starting individual parameter sets are defined on a log scale, and drawn
from a uniform distribution on Θ = [−6, 6]3 × [0, 1.5]. The algorithm was run over 1,000
iterations. To analyze the parameter identifiability, we follow the practical approach based
on the profile likelihood estimate (PLE), see for instance [138]. Specifically, we compute the
PLE around the MLE θ̂lm =

(
β̂1
l

m, α̂2
l
m, γ̂

l
m, µ̂

l
m

)
for each ith component θ̂lm,i, i ∈ J1, 4K, as

follows. We design a grid Gi around the best parameter value θ̂lm,i with a fixed step size (see
Table II.5 in Appendix II.5.1 for details), and re-optimize the remaining parameters using the
DE algorithm with the same optimization parameters (mut=0.8, crossp=0.7, popsize=20, its
= 1,000) and initial parameter sets defined on a log scale, and drawn from a uniform dis-
tribution on [−6, 6]3 for parameters β1, α2 and γ, and on [−1 + log(µ̂lm), log(µ̂lm) + 1] for
parameter µ. For each parameter θ̂lm,i, we obtain a MLE vector θ̂lm|[θlm,i = x], with x ∈ Gi:

θ̂lm|[θlm,i = x] := arg min
θ∈Θm,θlm,i=x

(
− log

(
L(xl; θ)

))
,
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and its associated PLE (vector) L(xl; θ̂lm|θlm,i).
Finally, the pointwise likelihood-based confidence intervals are constructed thanks to the
likelihood ratio test, following [138]; for each estimated parameter θ̂lm,i, we select all the
parameters θlm,i = x such that:

log
(
L(x; θ̂lm)

)
− log

(
L(x; θ|[θlm,i = x])

)
< 0.5 ∗∆α,

where ∆0.95 = χ2(0.95, 1) = 3.84 is the 0.95-quantile of the χ2 law with 1 degree of freedom.

II.3.3 Fitting results

In this subsection, we calibrate the model parameters for several submodels derived from
model (MFC):

• two-event submodels, including the spontaneous transition event together with either
the asymmetric (R1,R3) or symmetric division (R1,R4);

• three-event submodels, including both the spontaneous and auto-amplified transition
events, together with either the asymmetric (R1,R2,R3) or symmetric (R1,R2,R4)
division event;

• the full model (R1,R2,R4,R4)

In all cases the parameter ruling the initial condition, µ, is estimated.
We follow the procedure described in subsection II.3.2 to fit the parameters on the exper-

imental subsets xWT and xM and in-silico datasets introduced in subsection II.3.1.

a) Two-event submodels

The fitting results for submodels (R1,R3) and (R1,R4) are shown in Figure II.10. For both
the Wild-Type and Mutant subsets, a visual inspection shows that submodel (R1,R4) leads
to a “direct” transition, followed by prolonged cell proliferation after precursor cell extinction,
while with submodel (R1,R3), there is a higher probability that the total number of cells
increases before precursor cell extinction. This observation is consistent with the fitting
results of the in-silico datasets.

In Figure II.11, we show the PLE for each estimated parameter. Both the initial con-
dition parameter µ (orange solid lines) and asymmetric division rate α2 (green solid line)
are practically identifiable (in the sense given in [138]), while parameter γ (blue solid line)
is only partially practically identifiable in most cases. From the in silico dataset analyses,
we observe that both parameters α2 (R3) and γ (R4) are practically identifiable and close
to their expected values (less than one log10 of difference) when the parameters are of the
same order of magnitude than α1 (Datasets x(R1,R3),1 and x(R1,R4),1). In contrast, a small
parameter value compared to α1 leads to a biased parameter estimate, with a huge shift
between the estimated and true parameter values (roughly a two log10 difference).

b) Three-event submodels and complete model

We turn now to the analysis of three-event submodels (R1,R2,R3), (R1,R2,R4) and (R1,R3,R4))
and the complete model ((R1,R2,R3,R4). Qualitatively, the fitting results for submodel
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Fig. II.10 Two-event submodels: Best fit trajectories. Using Formula
II.38, we compute each probability P [Fc = f ] for submodel (R1,R4) with the
MLE parameter set θ̂lm, l ∈ {WT,M, ((R1,R4), 1)} (left panels), and submodel
(R1,R3) with the MLE parameter set θ̂lm, l ∈ {WT,M, ((R1,R3), 1)} (right pan-
els). Each dark gray square corresponds to a data point in the datasets xl,
l ∈ {WT,M, ((R1,R4), 1) , ((R1,R3), 1)}.

(R1,R2,R3) are similar to those for submodel (R1,R3) (data not-shown); they are charac-
terized by a high probability to produce ten or more proliferative cells before the precursor
cell extinction. The fitting results for submodels (R1,R2,R4) and (R1,R3,R4), as well as
for the complete model are rather similar to submodel (R1,R4); they are characterized by
direct cell transition with very little concomitant cell proliferation, followed by prolonged cell
proliferation after precursor cell extinction. The fitting results for the complete model are
shown in the top panel of Figure II.13 for both the Wild-type and Mutant subsets. We notice
that in the Mutant case, there is a tendency to produce more proliferative cells.

The PLEs for each dataset and each parameter are presented in Figure II.12 for the three-
event submodels and Figure II.13 for the complete model. The corresponding parameter
values and confidence intervals for the Wild-Type and Mutant subsets are given in Tables
II.3 and II.4 in the Appendix. As observed for the two-event submodels, in each case, the
initial condition parameter µ (orange solid lines) is always practically identifiable, and its
fitted value is close to the true one for the in silico datasets. In contrast, all other parameters
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Fig. II.11 Two-event submodels: PLE. Each panel represents the PLE, in
log10 scale, obtained from the experimental (top panels) and in silico datasets (bot-
tom panels), and either submodel (R1,R4) (left panels) or (R1,R3) (right panels).
The dashed black line represents the 95%-statistical threshold, while each point
represents the optimum value of the likelihood. Orange solid lines: PLE values
L(xl; θ̂lm|µ); blue solid lines: PLE values L(xl; θ̂l(R1,R4)|γ); green solid line: PLE
values L(xl; θ̂l(R1,R3)|α2). The colored points are the associated MLE θ̂lm. In the
bottom panels, the star symbols are the expected (true) parameter values (see Table
II.1).

have a lack of identifiability. Specifically, the asymmetric division rate α2 is practically not
identifiable for submodel (R1,R2,R3) with the experimental subsets, while it is identifiable
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Fig. II.12 Three-event submodels: PLE. Each panel represents the PLE, in
log10 scale, obtained from the experimental (top panels) and in silico datasets (bot-
tom panels), and either submodel (R1,R2,R4) (left panels), (R1,R2,R3) (center
panels), or (R1,R3),R4) (right panels).The dashed black line represents the 95%-
statistical threshold, while each point represents the optimum value of the likelihood.
Orange solid lines: PLE values L(xl; θ̂lm|µ); blue solid lines: PLE values L(xl; θ̂lm|γ);
green solid lines: PLE values L(xl; θ̂lm|α2); red solid lines: PLE values L(xl; θ̂lm|β1).
The colored points are the associated MLE θ̂lm. In the bottom panels, the star
symbols are the expected (true) parameter values (see Table II.1).



76 Chapter II. Modeling the ovarian follicle activation

with the in-silico datasets (although the estimated values are slightly biased), which indicates
that more data can indeed help to improve parameter identifiability. Interestingly, when
the asymmetric division event is combined with the symmetric division event (submodel
(R1,R3,R4)) rather than with the auto-amplified transition (submodel (R1,R2,R3)), the
asymmetric division rate γ becomes identifiable in the experimental subsets, which reveals
complex parameter dependencies between the asymmetric division rate α2 and auto-amplified
transition rate β1. In the complete model, only a very broad confidence interval (3-5 logs)
can be obtained for α2. In most cases, a finite confidence interval for the symmetric division
rate γ cannot be inferred from the experimental data, we can just get an upper-bound. The
fitting results obtained with the models including event R4 suggest a possible explanation:
since the transition and proliferation events are rather uncoupled, and occur sequentially
(first transition, then proliferation), the proliferation rate can just be constrained to be small
enough so that proliferation does almost not take place before cell precursor extinction.
After precursor cell extinction, the only possible remaining event is the symmetric division
event R4, whose timescale cannot be constrained by the time-free data. This explanation is
confirmed by the dependencies of β1 on γ for submodel (R1,R2,R4), shown in Figure II.17
in the Appendix. The optimum value (̂β1)

l

m|γ, computed from the PLE of γ (minimizing the
likelihood with γ fixed, see the blue lines in the top panels of Figure II.12 and bottom panels
of Figure II.13), increases linearly with γ as soon as the symmetric division rate gets upper
than 1 (hence greater than α1). Finally, the self-amplified transition rate β1 is not-identifiable
in most cases, and even not constrained by any upper-bound for the experimental subsets.
We note that in the complete model, the self-amplified transition rate β1 is constrained to
be greater than ≈ 100.66 in the Wild-type case, while it is unconstrained in the Mutant case
(with a slightly higher probability around 100.44).

c) Comparison of models

We now perform the comparison between the different nested submodels with either two or
three cell events and the complete model (MFC).

The AIC and BIC analyses performed to compare the submodels are summarized in
Table II.2. We use mainly this criterium as a rigorous tool even if some parameters are
not identifiable. The AIC and BIC criteria suggest that the best model associated with the
Wild-Type subset is the complete model, while the best model associated with the Mutant
subset is the three-event linear submodel (R1,R3,R4).

The reader can refer to [147] (Chapter 6) for a detailed presentation of the rule of thumb,
classically used to analyze the ∆AIC

i := AICi−AICmin and ∆BIC
i = BICi−BICmin values,

where i is the index of the ith model. For the Wild-Type subset, both ∆AIC and ∆BIC
suggest that a suitable alternative (2 < ∆ < 7) to the complete model are models (R1,R4),
and (R1,R3,R4), while model (R1,R2,R4) is less relevant (7 < ∆ < 9) and the remaining
models (R1,R3), (R1,R2,R3) can be safely ruled out (∆ > 10). For the Mutant subset,
the complete model is almost as probable (∆AIC < 2) as the best model (R1,R3,R4),
while models (R1,R4) and (R1,R2,R4) are less relevant (6 < ∆ < 9) and models (R1,R3),
(R1,R2,R3) can be safely ruled out as well (∆ > 10). These results are confirmed by the
AIC and BIC weight analyzes. For each dataset and criterion (AIC or BIC), we order the
AIC/BIC weights from the highest to the lowest values and sum them up. We retain as
acceptable all the models such that the sum is upper than the p-value 0.95. The AIC-based
selection retains the linear (R1,R3,R4) and complete models for both the Wild-Type and
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Mutant subsets (in both cases, p-value = 0.97), whereas the BIC-based selection retains the
two linear models (R1,R4) and (R1,R3,R4) and the complete model (WT p-value = 0.97,
M p-value = 0.96).

It is expected that even reaction R4 is crucial to better fit the data points on the C
axis (F = 0). Both rejected submodels (R1,R3), (R1,R2,R3) have indeed a negative log-
likelihood far away from the other models, which all includes event R4. As illustrated in
Figure II.10, if event R4 is present, as in submodel (R1,R4), the proliferative cells can keep
dividing after the extinction of the precursor cells (line f = 0). Once the precursor cell
number reaches zero for a given c, all remaining points (0, c′) for c′ ≥ c are reached with
probability one, which results in a comparatively low contribution of all (0, c) data points to
the negative log-likelihood. In contrast, if event R4 is not present, as in submodel (R1,R3),
the process stops as soon as the precursor cell population F gets extinct, which prevents
the likelihood of all (0, c′) points from being close to one (they rather take all intermediate
values).

Wild-Type Mutant
Model -logL(θ; x) AIC BIC -logL(θ; x) AIC BIC

(R1,R4) 172.87
349.74
w = 0.02
∆ = 7.6

354.74
w = 0.15
∆ = 3.0 149.97

303.94
w = 0.08
∆ = 8.8

308.73
w = 0.03
∆ = 6.4

(R1,R3) 245.54
495.09
w < 10−10

∆ >> 10

500.09
w < 10−10

∆ >> 10 230.17
464.34
w < 10−10

∆ >> 10

469.13
w < 10−10

∆ >> 10

(R1,R2,R4) 172.77
351.54
w = 0.008
∆ = 9.44

359.04
w < 10−10

∆ = 7.4 148.14
302.27
w = 0.02
∆ = 7.1

309.46
w = 0.02
∆ = 7.1

(R1,R2,R3) 242.51
491.02
w < 10−10

∆ >> 10

498.52
w < 10−10

∆ >> 10 229.44
464.89
w < 10−10

∆ >> 10

472.07
w < 10−10

∆ >> 10

(R1,R3,R4) 170.58
347.16
w = 0.07
∆ = 5.0

354.66
w = 0.15
∆ = 3.0 144.58 295.15

w = 0.64
302.34
w = 0.81

(Ri)i∈J1,4K 167.05 342.10
w = 0.90

351.68
w = 0.68 144.24

296.48
w = 0.33
∆ = 1.3

306.06
w = 0.12
∆ = 3.7

Table II.2 –Model comparison analysis. For each experimental subset and each submodel,
we compute both the Akaike information criterion (AIC) and Bayesian information criterion
(BIC), the AIC and BIC differences ∆AIC

i := AICi −AICmin and ∆BIC
i = BICi −BICmin,

and the corresponding Akaike and Bayesian weights wAICi = exp(−0.5∆AIC
i )∑6

k=1 exp(−0.5∆AIC
k

)
and wBICi =

exp(−0.5∆BIC
i )∑6

k=1 exp(−0.5∆BIC
k

)
following the formulas provided in [147] (Chapter 2 and 3).

II.3.4 Model prediction

In this subsection, we use the fitted parameter sets θ̂lm and the parameter values θ̂lm|θ̂lm,i,
for which the PLE is below the 95% threshold of the best models (the two linear submodels
(R1,R4) and (R1,R3,R4) and the complete model) to infer information on the experimental
subsets.
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a) Distribution of the initial condition

In the previous section, we have observed that the initial condition parameter µ is the unique
parameter to be practically identifiable in all cases, and that it is fitted to similar values from
one submodel to another (see Table II.2). Parameter µ can be either estimated from the
whole experimental subsets, as the other parameters, or, alternatively, from the cell number
of the primordial follicles only. For all l ∈ B, let xlini be the subset composed of the sole
primordial follicles:

xlini := {(fi, ci) ∈ xl such that ci = 0, i ∈ J1, N lK}.

We recall here that F0 is assumed to follow a truncated Poisson law of parameter µ (see
Eq. (II.40)). We use again a classical maximum likelihood approach, associated with the
experimental dataset xlini. From the likelihood function

Lini(xlini;µ) :=
∏

i∈J1,N lK:ci=0

µfi

(eµ − 1)fi!
,

we deduce the MLE µ̂lini, for all l ∈ B,

µ̂lini := arg min
µ≥1

(
− log

(
Lini(xlini;µ)

))
.

The law F0 with parameter µ̂lini is thus inferred solely from the primordial follicle data, while
the law F0 with parameter µ̂l is inferred using also the transitory and primary follicle data.
In Figure II.14, we compare for each subset WT or M the distributions derived from model
(R1,R4), (R1,R3,R4) and (R1,R2,R3,R4), using either only the primordial follicle data
or the complete follicle data. From the top panels of Figure II.14, we observe that in all
cases, there is an overestimation of the part of the distribution corresponding to P [F0 ≤ 5],
which suggests that the model for the initial condition should be a more truncated Poisson
distribution for the low values of F0. As expected, using more information leads to narrowing
down the uncertainties, hence the confidence intervals are smaller when the whole data are
used (for all models and subsets considered). More surprisingly, we observe a shift of approx-
imately one cell in average, in opposite directions for the Wild-Type and Mutant subset: for
the Wild-Type subset, the mean cell number is found to be greater when the whole data are
used, while for the Mutant subset, the mean cell number is found to be smaller (for all three
models considered). In details, the confidence intervals for the Mutant subset using the whole
data superimposes totally or partially to the confidence intervals using only the primordial
follicle data, with an overlap of 100% for model (R1,R4), 65% for model (R1,R2,R3,R4),
and 50% for model (R1,R3,R4). In the Wild-Type subset, the confidence intervals are more
disjoint, with an overlap of 64% for model (R1,R2,R3,R4), 25% for model (R1,R3,R4), and
no overlap at all for model (R1,R4).

b) Proliferative cell proportion: reconstruction of time

In Figure II.15, we represent the predicted change in the proliferative cell proportion with
respect to time. These predictions are derived from the deterministic formula Eq. (II.5) for
each model, using the parameter values obtained from the identifiability analysis, for which
the PLE is below the 95% threshold. In both the Wild-Type and Mutant cases, despite
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the uncertainty affecting the model parameters for the two linear submodels (left and right
upper panels), the dynamics just exhibit small uncertainties: the proportion of proliferative
cells reaches 50%-70% in one time unit, which corresponds to the time unit of a single
spontaneous transition event. This might due partly to the fact that parameter γ is partially
identifiable and is estimated to relatively low values. In contrast, the lack of parameter
identifiability of the complete model results in a huge uncertainty on the dynamics, that
can be up to 5 order of magnitude faster than a single spontaneous transition event: the
proportion of proliferative cells reaches 50% between 10−6 and 1 time unit. Indeed, cell event
R2 (controlled by parameter β1) can speed up the transition dynamics, and cell event R3
(controlled by parameter α2) can trigger the transition, leading to a possible fast activation
which avoids the bottleneck of the spontaneous transition timescale (α1 = 1). No clear
timescale separation between the Wild-type and Mutant dynamics can be revealed, although
some parameter combinations are compatible with a faster transition in the Wild-Type case
than in the Mutant case.

c) Mean extinction time, mean number of cells at the extinction time and mean
number of division events before extinction

In Figure II.16, we represent the mean number of proliferative cells, E [CτF0 ], as a func-
tion of the extinction time E

[
τF0

]
, and the mean number of division events before extinc-

tion, E [CτF0 − F0], as predicted from the selected (sub)models (R1,R4), (R1,R3,R4) and
(R1,R2,R3,R4). These predictions are obtained from a direct stochastic simulation of the
trajectories of each model (with Gillespie algorithm, or SSA)1, using the parameter values
obtained from the identifiability analysis, for which the PLE is below the 95% threshold. For
each subset (Wild-Type or Mutant), the predicted mean number of proliferative cells at the
extinction time is similar in each submodels and lies between 8 and 10 cells. Interestingly,
the predicted mean number of proliferative cells at the extinction time is approximately 6-8
cells lower than the empirical mean number of proliferative cells obtained directly from the
primary follicle data set {xl , such that f = 0} (Figure II.16, top panels). This observation
is consistent with the trajectory analysis performed from Figure II.10 for submodel (R1,R4)
and Figure II.13 for the complete model, from which we have concluded that the activation
process follows with high probability a trajectory reaching state f = 0 with a low cell number,
and characterized by direct transition and very little concomitant cell proliferation.

Similarly, the mean number of division events before the extinction time is approximately
5-7 cells lower than the increase in the mean empirical number of cells between the primordial
follicle datasets and primary follicle datasets (Figure II.16, bottom panels). The mean extinc-
tion time of the two linear submodels (R1,R4) and (R1,R3,R4) depends only on the initial
condition and is estimated to a value around 2.5 a.u. with a small uncertainty, similarly as in
Figure II.15. In contrast, the complete model yields a larger uncertainty on the mean extinc-
tion time, with a confidence interval between 10−6 and 0.5 a.u. for the Wild-Type subset,
and between 10−6 and 2.5 a.u. for the Mutant subset, consistently with the prediction on
the dynamics of the proliferative cell proportion (Figure II.15).

1We use here the direct simulation rather than Algorithm 1, because the parameter range explored by the
symmetric division rate γ in the PLE exceeds the bound γ < α1 required by Algorithm 1. A finer upper-bound
of the proliferative cell population in the nonlinear process (taking into account event R2 for instance) would
be required to use a finite state projection method when γ > α1 .
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d) Biological interpretation

From the primordial follicle data, we have found that the mean initial number of precursor
cells µ̂WT

ini for the Wild-Type subset is about the same as µ̂Mini for the Mutant. Moreover,
the prediction on the total number of proliferative cells at the end of the activation phase,
E
[
CF0
τ

]
, is also very similar in the Wild-Type and Mutant cases. The observed shift in

opposite directions for the mean initial cell number inferred from the MLE of the dynamical
models (µ̂WT

m ≈ µ̂WT
ini +1 and µ̂Mm ≈ µ̂Mini−1) is thus compensated for by the differences in cell

dynamics. The number of divisions during the transition is smaller in the Wild-Type than
in the Mutant subset (E[Cτ − F0] ≈ 2 in Wild-Type, E[Cτ − F0] ≈ 4 in Mutant), as a result
of a global difference between the MLE parameters: the order of magnitude of the division
rates are closer to that of the transition rates in the Mutant compared to the Wild-Type
subset. In overall, we conclude from our extensive datafitting analysis that the Wild-Type
subset exhibits a clearer separation of dynamics during follicle activation (first cell transition,
then cell proliferation), while in the Mutant cell proliferation could occur at a substantial
rate before precursor cell extinction. We note that this conclusion has to be tempered by
the sparse character of our experimental dataset. In particular, a detailed examination of
the experimental data reveals that the four data points available for transitory follicles in
the Wild-Type subset correspond to a clearly higher number of precursor cells than any of
the primordial follicles, which certainly impacts our results. In contrast, the Mutant subset
contains transitory follicles with significantly fewer precursor cells than the primary follicles.

Finally, we highlight that the β1-free linear submodel (R1,R3,R4) performs as well as,
and even better than the complete model (MFC) (Ri)i∈J1,4K in Mutant compared to Wild-
Type ewes, which is compatible with the functional hypotheses applicable to the BMP15R
mutation. Indeed, one could speculate that the diminished BMP15 signaling would hamper
the molecular dialog between the oocyte and somatic cells after follicle activation triggering,
so that the auto-amplified cell event would barely occur in the Mutant group.

II.4 Conclusion

In this work, we have introduced a stochastic nonlinear cell population model to study the
sequence of events occurring just after the initiation of follicle growth. We have characterized
the dynamics of precursor and proliferative cell populations according to the parameter values,
for both the stochastic model and its deterministic mean-field counterpart. We have studied
in details the extinction time of the precursor cell population, and designed an algorithm
to compute numerically both the mean extinction time and mean number of proliferative
cells at the extinction time. The algorithm is based on a domain truncation similar to
the Finite State Projection (FSP) method proposed in [58, 59]. The FSP approach aims
to approximate the law of the process at a given time by solving a truncated version of
the Kolmogorov forward system. We have adapted the FSP algorithm to solve the infinite
recurrence relation satisfied by the extinction time moments. We have found a consistent
spatial boundary to solve the closure problem, thanks to a coupling technique and tractable
upper-bound process. The numerical cost of the algorithm is deeply related to the proper
choice of the upper-bound processes. As we have noticed in section II.3, a finer approximation
would be required to compute the mean extinction time and mean number of proliferative
cells at the extinction time using the FSP method when dealing with a broader range of
parameters (and in particular the case α1 < γ < β1).
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This algorithm has nevertheless allowed us to investigate the parameter influence on
the precursor cell extinction time and number of proliferative cells at the end of the folli-
cle activation phase. The auto-amplified transition rate β1 exerts a critical control on the
mean extinction time, with a sharp timescale reduction when β1 exceeds the spontaneous cell
transition α1, while the division rates (α2, γ) have relatively less effect. The effect of the
auto-amplification process is probably dependent on the specific parameterization of the cell
event rates chosen in this work, yet our findings bring interesting insight into the mechanisms
underlying follicle activation; nonlinear feedbacks mediated through cell-to-cell communica-
tion certainly play a role, and our estimation results have shown that any impairment of this
feedback would change drastically the kinetics of follicle activation.

Moreover, our results can be useful to understand the variability in the cell numbers among
ovarian follicles at the end of the activation phase, which can be used as initial conditions for
models describing the following stages of follicle development [1, 148].

We have performed the parameter calibration in a special context of time-free data. It
turns out that the proliferative cell dynamics can be seen as a clock for the whole process, and
that the embedded Markov chain is better adapted to the time-free data than the continuous-
time model. We have used the embedded Markov chain to define a proper likelihood function
and a statistically rigorous framework. The likelihood function has allowed us to perform an
extensive data fitting analysis, using the very useful concept of profile likelihood estimate.
This analysis sheds light onto several aspects of the activation of ovarian follicles. First, the
transition scenario, where cell proliferation is mostly posterior to cell transition, and the cell
number increase is moderate, seems to be predominant versus a more proliferative scenario.
While the question is still open, it seems likely that cell transition is favored in the Wild-Type
strain compared to the Booroola mutant strain. With the available experimental dataset,
we have yet not managed to make a clear distinction between, on one side, a progressive
transition with a steady net flux from flattened to cuboidal cells, and, on the other side, an
auto-catalytic transition with an ever increasing flux all along the activation phase.

Beyond our application in female reproductive biology, we believe that the modeling ap-
proach presented here can have a more generic interest in cell kinetics related issues, especially
when a small number of cells is involved. Also, from the mathematical biology viewpoint, the
analysis performed on the extinction time, combining theoretical (coupling) and numerical
(finite state projection) tools may have an interest for first passage time studies in stochastic
processes.

II.5 Appendix

II.5.1 MLE parameter sets
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Model β1 α2 γ µ

(R1,R4) / /
10−6

∈ (0; 0.12]
7.49

∈ [7.05; 7.83]

(R1,R3) /
1.18

∈ [0.67; 1.57] /
7.22

∈ [6.81; 7.83]

(R1,R2,R4) 106 ∈ R /
104.35

∈ (0; 105.03]
7.45

∈ [7.05; 7.83]

(R1,R2,R3)
106

∈ [1.52; +∞)
105.75

∈ [2.00; 105.88] /
7.07

∈ [5.15; 6.35]

(R1,R3,R4) /
0.27

∈ [0.022; 0.52]
10−6

∈ (0; 0.068]
7.20

∈ [6.69; 7.69]

(R1,R2,R3,R4)
106

∈ [4.64; +∞)
104.78

∈ [0.87; 105.27]
10−6

∈ (0; 104.67]
7.06

∈ [6.58; 7.56]

Table II.3 – Wild-Type parameter sets

Model β1 α2 γ µ

(R1,R4) / /
0.14

∈ (0; 0.28]
6.40

∈ [5.93; 6.81]

(R1,R3) /
1.63

∈ [1.26; 2.20] /
5.91

∈ [5.34; 6.35]

(R1,R2,R4)
106

∈ R /
105.11

∈ [0.12; 105.39]
6.26

∈ [5.72; 6.81]

(R1,R2,R3)
106

∈ R
106

∈ [1.52; +∞) /
5.57

∈ [5.15; 6.35]

(R1,R3,R4) /
0.52

∈ [0.21; 0.91]
10−6

∈ (0, 0.98]
5.94

∈ [5.43; 6.54]

(R1,R2,R3,R4)
2.81
∈ R+

1.16
∈ [0.28; 105.51]

10−6

∈ (0; 104.9]
5.83

∈ [5.15; 6.35]

Table II.4 – Mutant parameter sets
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Fig. II.13 Complete model: Best fit trajectories and PLE. Top panels: using
Formula (II.38), we compute each probability P [Fc = f ] for the complete model
with the MLE θ̂lm, l ∈ B presented in Tables II.3 and II.4 (left panel: Wild-Type;
right panel: Mutant). Each dark gray square corresponds to one data point in the
experimental subsets xl, l ∈ B. Middle and bottom panels: each panel represents
the PLE, in log10 scale, obtained from the two experimental subsets (middle panel:
Wild-Type; bottom panel: Mutant) and for parameters β1, α2, γ, µ (see the legend
of Figure II.12). The dashed black line represents the 95%-statistical threshold,
while each colored filled circle represents the optimum value of the likelihood.
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Fig. II.14 Initial condition. Top and middle panels: experimental data his-
tograms of the number of precursor cells in primordial follicles with inferred Poisson
distributions. Histograms with coral-colored bars: initial precursor cell number in
primordial follicles for Wild-Type xWT

ini (top panels) and Mutant xMini (middle pan-
els) subsets. For subsets l ∈ B and submodels (R1,R4) (left panels), (R1,R3,R4)
(center panels) and (R1,R2,R3,R4) (right panels), we plot: in white dashed lines,
the truncated Poisson distribution (II.40) with MLE µ̂lm; in colored solid lines: the
truncated Poisson distribution (II.40) with µ in the confidence interval of µ̂lm; in
black dashed lines: the truncated Poisson distribution (II.40) with MLE µ̂lini; in gray
solid lines, the truncated Poisson distribution (II.40) with µ in the confidence inter-
val of µ̂lini (parameter values: µ̂WT

ini = 6.22 ∈ [5.54; 6.67], µ̂Mini = 6.77 ∈ [5.75; 7.60]).
Bottom panels: negative log-likelihood function Lini(xlini;µ) and confidence inter-
vals of µ̂lini and µ̂lm (left panel: Wild-Type, right panel: Mutant). Cyan dashed
lines: log-likelihood function Lini(xlini;µ); red dashed lines: 95% confidence inter-
val; colored solid lines (resp. filled circles): confidence intervals of µ̂lm (resp. µ̂lm
values) for each submodel.
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Fig. II.15 Dynamics of the proportion of proliferative cells. For sub-
model (R1,R4) (top left panels), (R1,R3,R4) (top right panels) and whole model
(R1,R2,R3,R4) : (R1,R3) (bottom panels), we plot the deterministic proportion
of proliferative cells pC(t) computed from Eq. (II.5) with the fitted parameters ly-
ing in the MLE confidence interval θ̂lm associated with each profile likelihood (see
subsection II.3.2 for details). Blue lines: pC(t) with parameters θ̂lm|γ; yellow lines:
pC(t) with parameters θ̂lm|µ; green lines: pC(t) with parameters θ̂lm|α2; red lines:
pC(t) with parameters θ̂lm|β1.
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Fig. II.16 Prediction of the mean number of proliferative cells and mean
number of division events before extinction. We plot the mean number of pro-
liferative cells at the extinction time E

[
CF0
τ

]
(top panels), and the mean number of

division events before extinction E
[
CF0
τ − F0

]
(bottom panels) as a function of the

mean extinction time E
[
τF0

]
(left panels: Wild-Type; right panels: Mutant). For

each parameter lying in the MLE confidence intervalθ̂lm, we simulate 10,000 trajecto-
ries with the Gillespie algorithm, up to the extinction event {F = 0}, and compute
E
[
τF0

]
, E

[
CF0
τ

]
and E

[
CF0
τ − F0

]
from standard empirical mean estimates. Col-

ored solid lines: E
[
CF0
τ

]
, E
[
CF0
τ − F0

]
as a function of E

[
τF0

]
for parameters θ̂lm|p

and p ∈ {β1, α2, γ, µ} associated with each profile likelihood (see subsection II.3.2
for details); filled circles: θ̂lm, for submodels {(R1,R4), (R1,R3,R4), and complete
model (R1,R2,R3,R4)}. Dotted black lines: standard empirical mean estimate of
proliferative cell numbers (top panels) and division events (bottom panels) before
extinction in the primary follicles (data set {xl , such that f = 0}).
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Model Parameter Wild-Type/Mutant Dataset x·1 Dataset x·2

(R1,R4) µ 0.015 0.005 0.01
γ 0.12 0.01 0.06

(R1,R3) µ 0.015 0.005 0.005
α2 0.04 0.01 0.01

(R1,R2,R4) µ 0.015 0.01 0.015
β1 0.12 0.07 0.12
γ 0.12 0.07 0.12

(R1,R2,R3) µ 0.015 0.015 0.015
β1 0.12 0.12 0.12
α2 0.12 0.02 0.02

(R1,R3,R4) µ 0.01 0.01 0.01
α2 0.08 0.01 0.01
γ 0.08 0.01 0.01

(R1,R2,R3,R4) µ 0.015 0.015 0.015
β1 0.12 0.12 0.12
α2 0.12 0.12 0.12
γ 0.12 0.12 0.12

Table II.5 – PLE parameter size-step
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Fig. II.17 Proliferation versus transition. For each subset (Wild-Type and
Mutant), and for submodel (R1,R2,R4) and complete model (R1,R2,R3,R4), we
represent the optimal value of β1 along the PLE of γ, (̂β1)

l

m|γ (the PLE of γ is
given by the blue lines in the top panels of Figure II.12 and bottom panels of Figure
II.13).
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Chapter III
Modeling the compact growth phase

Before presenting the aforementioned work [33], we first introduce the model from which
it was inspired.

III.1 Starting point: a non linear stochastic model for the coupled
dynamics of the somatic cell population and oocyte

III.1.1 The [Clément-Michel-Monniaux-Stiehl] (CMMS) model [1]
The spatial heterogeneity of cell division favored by growth factors secreted by the oocyte
has already been tackled in [1]. In this article, the authors have proposed a cell-based model
written with the Poisson point measure formalism to represent the coupled dynamics of the
somatic cells and oocyte. The cell population dynamics at time t is represented by the

measure Zt =
Nt∑
k=1

δ(Xk(t);Ak(t)), where Nt its associated number of somatic cells at time t. In

other words, each cell k, represented by a dirac mass δ(Xk(t);Ak(t)), is characterized by its age

89
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Fig. III.1 3D partition, extract from [1]. To evaluate the cell number in the
different layers (rainbow color), the authors construct a layer “partition” of the
space based on the spherical coordinates: the elements L(i,j,k)

t (ω) (Eq. (III.1)).

Ak(t) (continuous variable) and spatial position Xk(t) (discrete triplet of variable (i, j, k),
where i is the layer index, j the polar angle number and k the azimuth angle number).
Specifically, the cells are distributed into limited-size subdomains L(i,j,k)

t evolving with the
oocyte growth and grouped by their layer index: each subdomain L(i,j,k)

t
1 is a partition of

Layer i constructed from spherical coordinates

L(i,j,k)
t (ω) := {(r, θ, φ) ∈ [dO(t, ω)

2 + 2(i− 1)dS ,
dO(t, ω)

2 + 2idS ]

× [jπ j − 1
N

, π
j

N
]× [−π + 2πk − 1

N
, [−π + 2π k

N
]}, (III.1)

where N ∈ N∗, dO is the oocyte diameter whose growth law is given later and dS is the
somatic cell diameter. Layer i is defined as the union of all the partition sets L(i,j,k)

t with the
same layer index i:

L(i)
t (ω) := ∪j,k∈J1,NKL

(i,j,k)
t (ω),

where Ni ∈ N∗. Note that the volume layer V ol(i,j,k)
t increases with time with the same order

dO(t, ω)d2
S as the oocyte diameter. The number of somatic cells located in Layer i evolves as

dO(t,ω)/dS.
To represent the impact of mitogenic factors diffusing instantaneously and isotropically

from the oocyte on the cell cycle duration, each cell division occurs at a random time that
follows an exponential like law of layer-dependent division rate b(a) = 1− exp (−a/θi) where
θi is the average cell cyle duration in Layer i. In other words, the probability that a cell
situated on Layer i is still not divided at age a verifies

P [Ak(t) ≥ a] = exp
(
−a+ θi(1− e−a/θi)

)
. (III.2)

In addition, since the mitogenic factor concentration decreases radially, the cell cycle duration

1We slightly change the notation of subdomain L(j,i)
t provided in [1] and take the one used in [3] (from the

same author).
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is supposed to increase with the Layer i coordinate. The authors state that:

θi = θ1(1 + 2(i− 1) dS
dO

).

Cells may also move randomly between subdomains according to probabilities that take into
account the overcrowding:

p(L(i,j,k)
t (ω), Zt, t) = 1

1 + exp(−xijk−µ
σ )

.

The quantity xijk =< Zt,L(i,j,k)
t > V olS

V ol
(i,j,k)
t

, where < Zt,L(i,j,k)
t >, is the cell number in

subdomain L(i,j,k)
t and V olS is the volume of a somatic cell. Parameter µ accounts fo the

local overcrowding while σ is a variance that can be interpreted as the degree of tolerance to
overcrowding.
The oocyte growth is represented by the following SDE:

dO(t) = dO(0) +
∑
i≥1

κi
log2(e)θi

∫ t

0
d

(−4.1252)
O (s) < Z−s ,Lis− > ds, (III.3)

where each κi weights to the contribution of the somatic cells on Layer i on the occyte growth.
This model is non-linear hence, both numerical and analytical analyses are complex to per-
form.

III.1.2 From the [CMMS] model to our model
To obtain an analytically tractable problem, we first simplify the spatial structure of the
CMMS model. On the basis of symmetry arguments, we reduce the three spatial dimensions
(r, θ and φ) into one, the radial position, which amounts to spatially structuring the cells by
their layer index. The main source of non-linearity of this model then comes from the spatial
coupling between the somatic cells and the oocyte: the oocyte diameter growth is regulated
by the amount of cells on the different layers (Eq. (III.3)) and the cell positions evolve with
the oocyte diameter (layer capacity increasing with respect to time). We choose to follow
solely the somatic cells dynamics and “linearize” the model by separating the dynamics of the
somatic cells from the oocyte dynamics, also we do not impose a limit layer capacity. As a
result, the cell size is not represented and we do not fix a maximum number of cells per layer:
there is no notion of overcrowding. Finally, we consider a more general law b for the division
rates than that one presented in Eq. (III.2) hence we do not prescribe any particular form.
A specific choice will be made later in the calibration section and other options (continuous
compactly supported functions) are studied by solving the inverse problem (Chapter 5).
To sum up, the main ingredients of our model are now the cell division modulated by an
age- and layer-dependent rate, and inter-layer cell movements whose laws have not yet been
defined. To help the formal analyzes, we make a last modification to the initial model: the
daughter cells may move only immediately after their birth. We thus obtain a multitype
Bellman-Harris model whose the numerical and analytical analyses can be made using the
branching property.

This remaining part of this chapter is based on the published work
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Frédérique Clément, Frédérique Robin, Romain Yvinec. Analysis and calibration of a
linear model for structured cell populations with unidirectional motion: Application to
the morphogenesis of ovarian follicles. published in SIAM J. Appl. Math., 2019, Vol.
79, No. 1, pp. 207-229 (see [33]).

III.2 Introduction
We study a multitype age dependent model in both a deterministic and stochastic framework
to represent the dynamics of a population of cells distributed into successive layers. The model
is a two dimensional structured model: cells are described by a continuous age variable and
a discrete layer index variable. Cells may divide and move irreversibly from one layer to the
next. The cell division rate is age and layer dependent, and is assumed to be bounded below
and above. After division, the age is reset and the daughter cells either remain within the same
layer or move to the next one. In its stochastic formulation, our model is a multitype Bellman-
Harris branching process and in its deterministic formulation it is a multitype McKendrick–
VonFoerster system.

The model enters the general class of linear models leading to Malthusian exponential
growth of the population. In the partial differential equation (PDE) case, state-of-the-art-
methods call to renewal equations system [18] or to an eigenvalue problem and general relative
entropy techniques [149, 12] to show the existence of an attractive stable age distribution. Yet,
in our case, the unidirectional motion prevents us from applying the Krein–Rutman theorem
to solve the eigenvalue problem. As a consequence, we follow a constructive approach and
explicitly solve the eigenvalue problem. On the other hand, we adapt entropy methods
using weak convergences in L1 to obtain the large-time behavior and lower bound estimates
of the speed of convergence towards the stable age distribution. In the probabilistic case,
classical methods rely on renewal equations [65] and martingale convergences [150]. Using the
same eigenvalue problem as in the deterministic study, we derive a martingale convergence
giving insight into the large-time fluctuations around the stable state. Again, due to the
lack of reversibility in our model, we cannot apply the Perron–Frobenius theorem to study
the asymptotic of the renewal equations. Nevertheless, we manage to derive explicitly the
stationary solution of the renewal equations for the cell number moments in each layer as
in [65]. We recover the deterministic stable age distribution as the solution of the renewal
equation for the mean age distribution.

The theoretical analysis of our model highlights the role of one particular layer: the leading
layer characterized by a maximal intrinsic growth rate which turns out to be the Malthus
parameter of the total population. The notion of a leading layer is a tool to understand
qualitatively the asymptotic cell dynamics, which appears to operate in a multi-scale regime.
All the layers upstream the leading one may extinct or grow with a rate strictly inferior to
the Malthus parameter. The remaining downstream layers are driven by the leading layer:
they grow exactly as the same rate as the Malthus parameter, which overcomes their intrinsic
growth rates.

We then check and illustrate numerically our theoretical results. In the stochastic case,
we use a standard implementation of an exact stochastic simulation algorithm. In the de-
terministic case, we design and implement a dedicated finite volume scheme adapted to the
nonconservative form and dealing with proper boundary conditions. We verify that both
the deterministic and stochastic simulated distributions agree with the analytical stable age
distribution. Moreover, the availability of analytical formulas helps us to study the influence
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of the parameters on the asymptotic proportion of cells, Malthus parameter, and stable age
distribution.

Finally, we consider the specific application of ovarian follicle development inspired by
the model introduced in [1] and representing the proliferation of somatic cells and their
organization in concentric layers around the germ cell. While the original model is formulated
with a nonlinear individual-based stochastic formalism, we design a linear version based on
branching processes and endowed with a straightforward deterministic counterpart. We prove
the structural parameter identifiability in the case of age independent division rates. Using
a set of experimental biological data, we estimate the model parameters to fit the changes
in the cell numbers in each layer during the early stages of follicle development. The main
interest of our approach is to benefit from the explicit formulas derived in this paper to get
insight on the regime followed by the observed cell population growth.

Beyond the ovarian follicle development, linear models for structured cell populations
with unidirectional motion may have several applications in life science modeling, as many
processes of cellular differentiation and/or developmental biology are associated with a spa-
tially oriented development (e.g., neurogenesis on the cortex, intestinal crypt) or commitment
to a cell lineage or fate (e.g., hematopoiesis, acquisition of resistance in bacterial strains).

The paper is organized as follows. In section 2, we describe the stochastic and deter-
ministic model formulations and enunciate the main results. In section 3, we give the main
proofs accompanied by numerical illustrations. Section 4 is dedicated to the application to
the development of ovarian follicles. We conclude in section 5. Technical details and classical
results are provided in appendix sections.

III.3 Model description and main results

III.3.1 Model description

We consider a population of cells structured by age a ∈ R+ and distributed into layers in-
dexed from j = 1 to j = J ∈ N∗. The cells undergo mitosis after a layer-dependent stochastic
random time τ = τ j , governed by an age-and-layer-dependent instantaneous division rate
b = bj(a) : P[τ j > t] = e−

∫ t
0 bj(a)da. Each cell division time is independent from the other

ones. At division, the age is reset and the two daughter cells may pass to the next layer ac-
cording to layer-dependent probabilities. We note by p(j)

2,0 the probability that both daughter
cells remain on the same layer, p(j)

1,1 and p(j)
0,2, the probability that a single or both daughter

cell(s) move(s) from layer j to layer j+ 1, with p(j)
2,0 + p

(j)
1,1 + p

(j)
0,2 = 1. Note that the last layer

is absorbing: p(J)
2,0 = 1. The dynamics of the model are summarized in Figure III.2.

Stochastic model
Each cell in layer j of age a is represented by a Dirac mass δj,a where (j, a) ∈ E := J1, JK×R+.
LetMP be the set of point measures on E :

MP :=
{

N∑
k=1

δjk,ak , N ∈ N∗, ∀k ∈ J1, NK, (jk, ak) ∈ E
}
.
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Fig. III.2 Model description. Each cell ages until an age-dependent random
division time τ j . At division time, the age is reset and the two daughter cells may
move only in a unidirectional way. When j = J , the daughter cells stay on the last
layer.

The cell population is represented for each time t ≥ 0 by a measure Zt ∈MP :

Zt =
Nt∑
k=1

δ
I

(k)
t , A

(k)
t

, Nt :=� Zt,1�=
J∑
j=1

∫ +∞

0
Zt(dj, da) .

Nt is the total number of cells at time t. On the probability space (Ω,F ,P), we define Q as
a Poisson point measure of intensity ds⊗#dk⊗ dθ, where ds and dθ are Lebesgue measures
on R+ and #dk is a counting measure on N. The dynamics of Z = (Zt)t≥0 is given by the
following stochastic differential equation:

Zt =
N0∑
k=1

δ
I

(k)
0 , A

(k)
0 +t +

∫
[0,t]×E

1k≤Ns−R(k, s, Z, θ)Q(ds, dk, dθ)

where R(k, s, Z, θ) =(2δ
I

(k)
s− , t−s

− δ
I

(k)
s− , A

(k)
s−+t−s)10≤θ≤m1(s,k,Z)

+ (δ
I

(k)
s− , t−s

+ δ
I

(k)
s−+1, t−s − δI(k)

s− , A
(k)
s−+t−s)1m1(s,k,Z)≤θ≤m2(s,k,Z)

+ (2δ
I

(k)
s−+1, t−s − δI(k)

s− , A
(k)
s−+t−s)1m2(s,k,Z)≤θ≤m3(s,k,Z)

and m1(s, k, Z) =b
I

(k)
s−

(A(k)
s−)p(I(k)

s− )
2,0 ,m2(s, k, Z) = b

I
(k)
s−

(A(k)
s−)(p(I(k)

s− )
2,0 + p

(I(k)
s− )

1,1 ),

m3(s, k, Z) =b
I

(k)
s−

(A(k)
s−) .

(III.4)

Deterministic model
The cell population is represented by a population density function ρ :=

(
ρ(j)(t, a)

)
j∈J1,JK ∈

L1(R+)J where ρ(j)(t, a) is the cell age density in layer j at time t. The population evolves
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according to the following system of partial differential equations:
∂tρ

(j)(t, a) + ∂aρ
(j)(t, a) = −bj(a)ρ(j)(t, a)

ρ(j)(t, 0) = 2p(j−1)
L

∫ ∞
0

bj−1(a)ρ(j−1)(t, a)da+ 2p(j)
S

∫ ∞
0

bj(a)ρ(j)(t, a)da

ρ(0, a) = ρ0(a)

(III.5)

where ∀j ∈ J1, J − 1K, p(j)
S = 1

2p
(j)
1,1 + p

(j)
2,0, p

(j)
L := 1

2p
(j)
1,1 + p

(j)
0,2, p

(0)
L = 0 and p(J)

S = 1 . Here,
p

(j)
S is the probability that a cell taken randomly among both daughter cells, remains on the

same layer and p(j)
L = 1− p(j)

S is the probability that the cell moves.

III.3.2 Hypotheses

Hypothesis III.1. For all j ∈ J1, J − 1K, p(j)
S , p

(j)
L ∈ (0, 1).

Hypothesis III.2. For each layer j, bj is continuous bounded below and above:

∀j ∈ J1, JK, ∀a ∈ R+, 0 < bj ≤ bj(a) ≤ bj <∞ .

Definition III.1. Bj is the distribution function of τ j (Bj(x) = 1− e−
∫ x

0 bj(a)da) and dBj its
density function (dBj(x) = bj(x)e−

∫ x
0 bj(a)da).

Hypothesis/Definition III.1. (Intrinsic growth rate) The intrinsic growth rate λj of layer
j is the solution of

dB∗j (λj) :=
∫ ∞

0
e−λjsdBj(s)ds = 1

2p(j)
S

.

Remark III.1. dB∗j is the Laplace transform of dBj. It is a strictly decreasing function
and (−bj ,∞) ⊂ Supp(dB∗j ) ⊂ (−bj ,∞). Hence, λj > −bj. Moreover, note that dB∗j (0) =∫∞

0 dBj(x)dx = 1. Thus, λj < 0 when p
(j)
S < 1

2 , λj > 0 when p
(j)
S > 1

2 and λj = 0 when
p

(j)
S = 1

2 . In particular, λJ > 0 as p(J)
S = 1.

Remark III.2. In the classical McKendrick–VonFoerster model (one layer), the population
grows exponentially with rate λ1 (see [26], Chap. IV). The same result is shown for the
Bellman–Harris process in [65] (Chap. VI).

Hypothesis/Definition III.2 (Malthus parameter). The Malthus parameter λc is defined
as the unique maximal element taken among the intrinsic growth rates (λj, j ∈ J1, JK) defined
in (III.1). The layer such that the index j = c is the leading layer.

According to Remark III.1, λc is positive. We will need auxiliary hypotheses on λj
parameters in some Theorems.

Hypothesis III.3. All the intrinsic growth rate parameters are distinct.

Hypothesis III.4. For all j ∈ J1, JK, λj > −lim inf
a→+∞

bj(a).

Hypothesis III.4 implies additional regularity for t 7→ e−λjtdBj(t) (see proof in A.1.1):
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Corollary III.1. Under Hypotheses III.2 and III.4 and Hypothesis/Definition III.1, for all
j ∈ J1, JK, ∀k ∈ N,∫∞

0 tke−λjtdBj(t)dt <∞ .

Stochastic initial condition
We suppose that the initial measure Z0 ∈ MP is deterministic. (Ft)t∈R+ is the natural fil-
tration associated with (Zt)t∈R+ and Q.

Deterministic initial condition
We suppose that the initial population density ρ0 belongs to L1(R+)J .

III.3.3 Notation

Let f, g ∈ L1(R+)J . We use for the scalar product:

• on RJ+, fT (a)g(a) =
∑J
j=1 f

(j)(a)g(j)(a),

• on L1(R+), 〈f (j), g(j)〉 =
∫ ∞

0
f (j)(a)g(j)(a)da, for j ∈ J1, JK,

• on L1(R+)J , � f, g �=
∑J
j=1

∫∞
0 f (j)(a)g(j)(a)da.

Given a martingale M = (Mt)t≥0, let 〈M,M〉t be its predictable quadratic variation at time
t; remark that this notation is different from the scalar product on L1(R+). We also introduce

B(a) = diag(b1(a), ..., bJ(a)), [K(a)]i,j =

 2p(j)
S bj(a), i = j, j ∈ J1, JK

2p(j−1)
L bj−1(a), i = j − 1, j ∈ J2, JK

We define the primal problem (P) as
LP ρ̂(a) = λρ̂(a), a ≥ 0
ρ̂(0) =

∫ ∞
0

K(a)ρ̂(a)da
� ρ̂,1�= 1 and ρ̂ ≥ 0

, LP ρ̂(a) = −∂aρ̂(a)−B(a)ρ̂(a), (P)

and the dual problem (D) is given by{
LDφ(a) = λφ(a), a ∈ R∗+
� ρ̂, φ�= 1 and φ ≥ 0

, LDφ(a) = ∂aφ(a)−B(a)φ+K(a)Tφ(0). (D)

III.3.4 Main results

a) Eigenproblem approach

Theorem III.1 (Eigenproblem). Under Hypotheses III.1, III.2, III.4 and, Hypotheses/Definitions
III.1 and III.2, there exists a first eigenelement triple (λ, ρ̂, φ) solution to equations (P) and
(D) where ρ̂ ∈ L1(R+)J and φ ∈ Cb(R+)J . In particular, λ is the Malthus parameter λc given
in Definition III.2, and ρ̂ and φ are unique.

Beside the dual test function φ, we introduce other test functions to prove large-time
convergence. Let φ̂(j), j ∈ J1, JK be a solution of

∂aφ̂
(j)(a)− (λj + bj(a))φ̂(j)(a) = −2p(j)

S bj(a)φ̂(j)(0), φ̂(j)(0) ∈ R∗+ . (III.6)
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Theorem III.2. Under Hypotheses III.1, III.2, III.4 and Hypotheses/Definitions III.1 and
III.2, there exist polynomials (β(j)

k )1≤k≤j≤J of degree at most j − k such that

〈∣∣e−λctρ(j)(t, ·)− ηρ̂(j)∣∣, φ̂(j)
〉
≤

j∑
k=1

e−µjtβ
(j)
k (t)

〈∣∣ρ(k)
0 − ηρ̂

(k)∣∣, φ̂(k)
〉
,

where η :=� ρ0, φ �, µj := λc − λj > 0 when j ∈ J1, JK \ {c} and µc := bc. In particular,
there exist a polynomial β of degree at most J − 1 and constant µ such that

�
∣∣e−λctρ(t, ·)− ηρ̂

∣∣, φ̂�≤ β(t)e−µt �
∣∣ρ0 − ηρ̂

∣∣, φ̂� .

Using martingale techniques [150], we also prove a result of convergence for the stochastic
process Z with the dual test function φ.

Theorem III.3. Under Hypotheses III.1, III.2 and Hypotheses/Definitions III.1 and III.2,
W φ
t = e−λct � φ,Zt � is a square integrable martingale that converges almost surely and in

L2 to a nondegenerate random variable W φ
∞.

b) Renewal equation approach

Using generating function methods developed for multitype age dependent branching pro-
cesses (see [65], Chap. VI), we write a system of renewal equations and obtain analytical
formulas for the first two moments. We define Y (j,a)

t := 〈Zt,1j,≤a〉 as the number of cells on
layer j and of age less than or equal to a at time t, and ma

i (t) its mean starting from one
mother cell of age 0 on layer 1:

ma
j (t) := E[Y (j,a)

t |Z0 = δ1,0] .

Theorem III.4. Under Hypotheses III.1, III.2, III.4 III.3, and Hypotheses/Definitions III.2,
for all a ≥ 0,

∀j ∈ J1, JK, ma
j (t)e−λct → m̃j(a), t→∞,

where m̃j(a) = 

0, j ∈ J1, c− 1K,∫ a
0 ρ̂

(c)(s)ds
2p(c)
S ρ̂(c)(0)

∫∞
0 sdBc(s)e−λcsds

, j = c,

∫ a
0 ρ̂

(j)(s)ds
2p(c)
S ρ̂(c)(0)

∫∞
0 sdBc(s)e−λcsds

c−1∏
k=1

2p(k)
L dB∗k(λc)

1− 2p(k)
S dB∗k(λc)

, j ∈ Jc+ 1, JK.

c) Calibration

We now consider a particular choice of the division rate:

Hypothesis III.5 (Age-independent division rate). For all (j, a) ∈ E, bj(a) = bj.

We also consider a specific initial condition with N ∈ N∗ cells.

Hypothesis III.6 (First layer initial condition). Z0 = Nδ1,0.
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Then, integrating the deterministic PDE system (III.5) with respect to age or differenti-
ating the renewal equation system (see (III.24)) on the mean number M , we obtain:

{
d
dtM(t) = AM(t)
M(0) = (N, 0, ..., 0) ∈ RJ , [A]i,j :=

{
(2p(j)

S − 1)bj , i = j, j ∈ J1, JK,
2p(j−1)
L bj−1, i = j − 1, j ∈ J2, JK.

(III.7)

We prove the structural identifiability of the parameter set P := {N, bj , p(j)
S , j ∈ J1, JK} when

we observe the vector M(t; P) at each time t.

Theorem III.5. Under Hypotheses III.1, III.5 and III.6 and complete observation of system
(III.7), the parameter set P is identifiable.

We then perform the estimation of the parameter set P from experimental cell number
data retrieved on four layers and sampled at three different time points (see Table III.1a). To
improve practical identifiability, we embed biological specifications used in [1] as a recurrence
relation between successive division rates:

bj = b1
1 + (j − 1)× α, j ∈ J1, 4K, α ∈ R.

We estimate the parameter set Pexp = {N, b1, α, p(1)
S , p

(2)
S , p

(3)
S } using the D2D software [91]

with an additive Gaussian noise model (see Figure III.3 and Table III.1b). An analysis of the
profile likelihood estimate shows that all parameters except p(2)

S are practically identifiable
(see Figure A.1b in Appendix subsection A.1.5).

Fig. III.3 Data fitting with model (III.7). Each panel illustrates the changes
in the cell number in a given layer (top-left: Layer 1, top-right: Layer 2, bottom-left:
Layer 3, bottom-right: Layer 4). The black diamonds represent the experimental
data, the solid lines are the best fit solutions of (III.7) and the dashed lines are drawn
from the estimated variance. The parameter values (Table III.1b) are estimated
according to the procedure described in Appendix subsection A.1.5.
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III.4 Theoretical proof and illustrations

III.4.1 Eigenproblem
We start by solving explicitly the eigenproblem (P)–(D) to prove Theorem III.1.

Proof of Theorem III.1. According to Definition III.1, any solution of (P) in L1(R+)J is given
by, ∀j ∈ J1, JK,

ρ̂(j)(a) = ρ̂(j)(0)e−λa(1− Bj)(a) .

The boundary condition of the problem (P) gives us a system of equations for λ and ρ̂(j)(0),
j ∈ J1, JK:

ρ̂(j)(0)× (1− 2p(j)
S dB∗j (λ)) = 2p(j−1)

L dB∗j−1(λ)× ρ̂(j−1)(0) .

This system is equivalent to

C(λ)ρ̂(0) = 0, [C(λ)]i,j =
{

1− 2p(j)
S dB∗j (λ), i = j, j ∈ J1, JK,

2p(j−1)
L dB∗j−1(λ), i = j − 1, j ∈ J2, JK.

Let Λ := {λj , j ∈ J1, JK}. The eigenvalues of the matrix C(λ) are 1− 2p(j)
S dB∗j (λ), j ∈ J1, JK.

Thus, if λ /∈ Λ, according to Hypothesis/Definition III.1, 0 is not an eigenvalue of C(λ) which
implies that ρ̂(0) = 0. As ρ̂ satisfies both (III.4.1) and the normalization � ρ̂,1 �= 1, we
obtain a contradiction. So, necessary λ ∈ Λ.
We choose λ = λc to be the maximum element of Λ according to Hypothesis/Definition III.2.
Then, using (III.4.1) when j = c, we have:

ρ̂(c)(0)× (1− 2p(c)
S dB∗c (λc)) = 2p(c−1)

L dB∗c−1(λc)× ρ̂(c−1)(0) .

Note that 1− 2p(c)
S dB∗c (λc) = 0, so ρ̂(c−1)(0) = 0 and by backward recurrence using (III.4.1)

from j = c − 1 to 1, it comes that ρ̂(j)(0) = 0 when j < c. By Hypothesis/Definition III.2,
max(Λ) is unique. Thus, when j > c, λj 6= λc and 1 − 2p(j)

S dB∗j (λc) 6= 0. Solving (III.4.1)
from j = c+ 1 to J , we obtain

ρ̂(j)(0) = ρ̂(c)(0)×
j∏

k=c+1

2p(k−1)
L dB∗k−1(λc)

1− 2p(k)
S dB∗k(λc)

, ∀j ∈ Jc+ 1, JK .

We deduce ρ̂(c)(0) from the normalization � ρ̂,1�= 1. Hence, ρ̂ is uniquely determined by
(III.4.1) together with the following boundary value:

ρ̂(j)(0) =



0, j ∈ J1, c− 1K,

1∑J
j=c

∫∞
0 ρ̂(j)(a)da

∏j
k=c+1

2p(k−1)
L dB∗

k−1(λc)

1−2p(k)
S dB∗

k
(λc)

, j = c,

ρ̂(c)(0)
j∏

k=c+1

2p(k−1)
L dB∗k−1(λc)

1− 2p(k)
S dB∗k(λc)

, j ∈ Jc+ 1, JK.

(III.8)

For the ODE system (D), any solution is given by, for j ∈ J1, JK,

φ(j)(a) =
[
φ(j)(0)− 2

(
φ(j)(0)p(j)

S + φ(j+1)(0)p(j)
L

) ∫ a

0
e−λcsdBj(s)ds

]
e
∫ a

0 λc+bj(s)ds .
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As
∫ a

0
bj(s)e−

∫ s
0 λc+bj(u)duds is equal to dB∗j (λc)−

∫ ∞
a

bj(s)e−
∫ s

0 λc+bj(u)duds, we get

φ(j)(a) =
[
φ(j)(0)

(
1− 2p(j)

S dB∗j (λc) + 2p(j)
S

∫ +∞

a
bj(s)e−

∫ s
0 λc+bj(u)duds

)
−φ(j+1)(0)

(
2p(j)
L dB∗j (λc)− 2p(j)

L

∫ +∞

a
bj(s)e−

∫ s
0 λc+bj(u)duds

)]
e
∫ a

0 λc+bj(s)ds .

Searching for φ ∈ Cb(R+)J , it comes that

∀j ∈ J1, JK, φ(j)(0)
(
1− 2p(j)

S dB∗j (λc)
)
− φ(j+1)(0)2p(j)

L dB∗j (λc) = 0 .

According to Hypothesis/Definition III.1, when j = c in (III.4.1) we get φ(c+1)(0) = 0.
Recursively, φ(j)(0) = 0 when j > c. Solving (III.4.1) from j = 1 to c− 1, we get

∀j ∈ J1, c− 1K, φ(j)(0) = φ(c)(0)×
c−1∏
k=j

2p(k−1)
L dB∗k−1(λc)

1− 2p(k)
S dB∗k(λc)

. (III.9)

Again, we deduce φ(c)(0) from the normalization 1 =� ρ̂, φ�= 〈ρ̂(c), φ(c)〉. Using Corollary
III.1, we apply the Fubini theorem:

φ(c)(0) = 1
2ρ̂(c)(0)p(c)

S

∫∞
0
( ∫+∞

a e−λcsdBc(s)ds
)
da

= 1
2ρ̂(c)(0)p(c)

S

∫∞
0 se−λcsdBc(s)ds

.

(III.10)
Hence, the dual function φ is uniquely determined by

φ(j)(a) = 2
[
p

(j)
S φ(j)(0) + p

(j)
L φ(j+1)(0)

] ∫ +∞

a
bj(s)e−

∫ s
a
λc+bj(u)duds . (III.11)

together with the recurrence relation (III.9) and the boundary value (III.10) (φ is null on the
layers downstream the leading layer, j > c).

From Theorem III.1, we deduce the following bounds on φ (see proof in A.1.1).

Corollary III.2. According to Hypothesis III.2 and Hypotheses/Definitions III.1 and III.2,

∀j ∈ J1, cK,
bj

λc + bj
≤ φ(j)(a)

2[p(j)
S φ(j)(0) + p

(j)
L φ(j+1)(0)]

≤ 1. (III.12)

To conclude this section, we also solve the additional dual problem on isolated layers
which is needed to obtain the large-time convergence (see proof in A.1.1).

Lemma III.1. According to Hypotheses III.2, III.4 and Hypothesis/Definition III.1, any
solution φ̂ of (III.6) satisfies

∀j ∈ J1, JK, φ̂(j)(a) = 2p(j)
S φ̂(j)(0)

∫ +∞

a
bj(s)e−λjs−

∫ s
a
bj(u)duds

and, ∀a ∈ R+ ∪ {+∞},
bj

λj+bj
≤ φ̂(j)(a)

2p(j)
S φ̂(j)(0)

< +∞ .
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In what follows, we fix

φ̂(c)(0) = φ(c)(0), ∀j ∈ J1, c− 1K φ̂(j)(0) = φ(j)(0) + p
(j)
L

p
(j)
S

φ(j+1)(0).

A first consequence is that φ̂(c) = φ(c) and, moreover, from Corollary III.2 and Lemma III.1,
we have

φ(j)(a) ≤ λj + bj
bj

φ̂(j)(a) . (III.13)

III.4.2 Asymptotic study for the deterministic formalism

Adapting the method of characteristic, it is classical to construct the unique solution in
C1(R+,L1(R+)J

)
of PDE (III.5) ([26], Chap. I). Let ρ be the solution of (III.5), ρ̂ and φ

given by Theorem III.1 and η =� ρ0, φ� . We define h as

h(t, a) = e−λctρ(t, a)− ηρ̂(a), (t, a) ∈ R+ × R+ .

Following [149], we first show a conservation principle (see the proof in Appendix subsection
A.1.1).

Lemma III.2 (Conservation principle). The function h satisfies the conservation principle

� h(t, ·), φ�= 0 .

Second, we prove that h is solution of the following PDE system (see proof in Appendix
subsection A.1.1).

Lemma III.3. h is solution of{
∂t
∣∣h(t, a)

∣∣+ ∂a
∣∣h(t, a)

∣∣+ (λc +B(a))
∣∣h(t, a)

∣∣ = 0,∣∣h(t, 0)
∣∣ =

∣∣ ∫+∞
0 K(a)h(t, a)da

∣∣.
Together with the above Lemmas III.1, III.2 and III.3, we now prove the following key

estimates required for the asymptotic behavior.

Lemma III.4. For all j ∈ J1, JK, the component h(j) of h verifies the inequality

∂t
〈∣∣h(j)(t, ·)

∣∣, φ̂(j)
〉
≤ αj−1

〈
|h(j−1)(t, ·)|, φ̂(j−1)

〉
− µj

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
+ rj(t) , (III.14)

where α0 := 0, for j ∈ J1, JK, αj := p
(j)
L

p
(j)
S

bj
bj

φ̂(j+1)(0)
φ̂(j)(0) (λj + bj) and

µj =
{
λc − λj , j 6= c
bc, j = c

, rj(t) :=


0, j 6= c
c−1∑
j=1

λj + bj
bj

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
, j = c .

Proof of Lemma III.4. We remind the reader that p(0)
L = 0 so that all the following compu-

tations are consistent with j = 1. Multiplying (III.3) by φ̂ and using (III.6), it comes for any
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j
∂t
∣∣h(j)(t, a)

∣∣φ̂(j)(a) + ∂a
∣∣h(j)(t, a)

∣∣φ̂(j)(a) = −2p(j)
S φ̂(j)(0)bj(a)

∣∣h(j)(t, a)
∣∣+ [λj − λc]

∣∣h(j)(t, a)
∣∣φ̂(j)(a),∣∣h(j)(t, 0)

∣∣φ̂(j)(0) = φ̂(j)(0)
∣∣2p(j)

S

〈
bj , h

(j)(t, ·)
〉

+ 2p(j−1)
L

〈
bj−1, h

(j−1)(t, ·)
〉 ∣∣.

(III.15)

As ρ(t, ·) and ρ̂ belong to L1(R+)J and φ̂ is a bounded function (from Lemma III.1) we
deduce that � h(t, ·), φ̂�<∞. Integrating (III.15) with respect to age, we have

∂t
〈∣∣h(j)(t, ·)

∣∣, φ̂(j)
〉

= φ̂(j)(0)
[∣∣h(j)(t, 0)

∣∣− 2p(j)
S

〈∣∣h(j)(t, ·)
∣∣, bj〉]+(λj−λc)

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
.

(III.16)
We deal with the first term in the right-hand side of (III.16). When j 6= c, using first the
boundary value in (III.15), a triangular inequality and Lemma III.1, we get

φ̂(j)(0)
(∣∣h(j)(t, 0)

∣∣− 2p(j)
S

〈∣∣h(j)(t, ·)
∣∣, bj〉) ≤ 2p(j−1)

L φ̂(j)(0)
〈∣∣h(j−1)(t, ·)

∣∣, bj−1
〉

≤ αj−1
〈
|h(j−1)(t, ·)|, φ̂(j−1)

〉
.

Thus, for j 6= c,

∂t
〈∣∣h(j)(t, ·)

∣∣, φ̂(j)
〉
≤ αj−1

〈
|h(j−1)(t, ·)|, φ̂(j−1)

〉
− µj

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
.

When j = c, using the boundary value in (III.15) and a triangular inequality, we get

∂t
〈∣∣h(c)(t, ·)

∣∣, φ̂(c)
〉
≤ 2p(c)

S φ̂(c)(0)
[∣∣ 〈h(c)(t, ·), bc

〉 ∣∣− 〈∣∣h(c)(t, ·)
∣∣, bc〉 ]

+ 2p(c−1)
L φ̂(c)(0)

∣∣ 〈h(c−1)(t, ·), bc−1
〉 ∣∣ . (III.17)

To exhibit a term
〈∣∣h(c)(t, ·)

∣∣, φ̂(c)
〉
in the right hand-side of (III.17), we need a more refined

analysis. According to the conservation principle (Lemma III.2), for any constant γ (to be
chosen later), we obtain

2p(c)
S φ̂(c)(0)

∣∣ 〈h(c)(t, ·), bc
〉 ∣∣ =

∣∣2p(c)
S φ̂(c)(0)

〈
h(c)(t, ·), bc

〉
− γ � h(t, ·), φ�

∣∣
≤

∣∣ 〈h(c)(t, ·), 2p(c)
S φ̂(c)(0)bc − γφ(c)

〉 ∣∣+ γ
c−1∑
j=1

〈∣∣h(j)(t, ·)
∣∣, φ(j)

〉
.

where we used a triangular inequality in the latter estimate. Moreover, according to (III.13),
we have

∀j ∈ J1, c− 1K,
〈∣∣h(j)(t, ·)

∣∣, φ(j)
〉
≤ λj + bj

bj

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
,

and according to Corollary III.2,

φ(c)(a) ≤ 2p(c)
S φ(c)(0)
bc

bc(a). (III.18)
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We want to find at least one constant γ such that for all a ≥ 0 , 2p(c)
S φ̂(c)(0)bc(a) −

γφ(c)(a) > 0. From (III.18), we choose γ = bc, and deduce from (III.4.2) and (III.4.2) that

2p(c)
S φ̂c(0)

∣∣ 〈h(c)(t, ·), bc
〉 ∣∣ ≤ 2p(c)

S φ̂(c)(0)
〈∣∣h(c)(t, ·)

∣∣, bc〉− bc 〈∣∣h(c)(t, ·)
∣∣, φ(c)

〉
+ bc

c−1∑
j=1

λj + bj
bj

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
.

As before, using Lemma III.1, we obtain

2p(c−1)
L φ̂(c)(0)

∣∣ 〈h(c−1)(t, ·), bc−1
〉 ∣∣ ≤ αc−1

〈∣∣h(c−1)(t, ·)
∣∣, φ̂(c−1)

〉
.

Combining the latter inequality with (III.4.2) and (III.17), we deduce (III.14) for j = c.

We now have all of the elements to prove Theorem III.2.

Proof of Theorem III.2. We proceed by recurrence from the index j = 1 to J . For j = 1, we
can apply Gronwall lemma in inequality (III.14) to get〈

|h(1)(t, ·)|, φ̂(1)
〉
≤ e−µ1t

〈
|h(1)(0, ·)|, φ̂(1)

〉
.

We suppose that for a fixed 2 ≤ j ≤ J and for all ranks 1 ≤ i ≤ j−1, there exist polynomials
β

(i)
k , k ∈ J1, iK, of degree at most i− k such that

〈
|h(i)(t, ·)|, φ̂(i)

〉
≤

i∑
k=1

β
(i)
k (t)e−µkt

〈
|h(k)(0, ·)|, φ̂(k)

〉
.

Applying this recurrence hypothesis in inequality (III.14) for j, there exist polynomials β̃(j)
k (t)

for k ∈ J1, j − 1K (same degree than β(j−1)
k (t) ):

∂t
〈∣∣h(j)(t, ·)

∣∣, φ̂(j)
〉
≤
∑j−1
k=1 β̃

(j)
k (t)e−µkt

〈
|h(k)(0, ·)|, φ̂(k)

〉
− µj

〈∣∣h(j)(t, ·)
∣∣, φ̂(j)

〉
.

We get from a modified version of the Gronwall lemma (see Lemma A.1 in Appendix section):

〈
|h(j)(t, ·)|, φ̂(j)

〉
≤

j∑
k=1

β
(j)
k (t)e−µkt

〈
|h(k)(0, ·)|, φ̂(k)

〉
.

where β(j)
j is a constant and for k ∈ J1, j − 1K, β(j)

k is a polynomial of degree at most
(j − 1 − k) + 1 = j − k (the degree only increases by 1 when µk = µj). This achieves the
recurrence.

III.4.3 Asymptotic study of the martingale problem

The existence and uniqueness of the SDE (III.4) is proved in a more general context than
ours in [85]. Following the approach proposed in [85], we first derive the generator of the
process Z solution of (III.4). In this part, we consider F ∈ C1(R+,R+) and f ∈ C1

b (E ,R+).
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Theorem III.6 (Infinitesimal generator of (Zt)). Under Hypotheses III.1 and III.2, the
process Z defined in (III.4) and starting from Z0 is a Markovian process in the Skorokhod
space D([0, T ],MP (J1, JK× R+)). Let T > 0, Z satisfies

E
[
sup
t≤T

Nt
]
<∞, E

[
sup
t≤T
� a, Zt �

]
<∞, (III.19)

and its infinitesimal generator is

GF
[
� f, Z �

]
=� F ′[� Z, f � ]∂af, Z �

+
J∑
j=1

∫ ∞
0

(
F
[
� f, 2δj,0 − δj,a + Z �

]
− F

[
� f, Z �

])
p

(j)
2,0bj(a)Z(dj, da)

+
J∑
j=1

∫ ∞
0

(
F
[
� f, δj,0 + δj+1,0 − δj,a + Z �

]
− F

[
� f, Z �

])
p

(j)
1,1bj(a)Z(dj, da)

+
J∑
j=1

∫ ∞
0

(
F
[
� f, 2δj+1,0 − δj,a + Z �

]
− F

[
� f, Z �

])
p

(j)
0,2bj(a)Z(dj, da) .

From this theorem, we derive the following Dynkin formula.

Lemma III.5 (Dynkin formula). Let T > 0. Under Hypotheses III.1 and III.2, ∀t ∈ [0, T ],

F [� f, Zt � ] = F [� f, Z0 � ] +
∫ t

0
GF [� f, Zs � ]ds+MF,f

t

where MF,f is a martingale. Moreover,

� f, Zt �=� f, Z0 � +
∫ t

0
� LDf, Zs � ds+Mf

t

where LD the dual operator in (D) and Mf is a L2–martingale defined by

Mf
t =

∫ t

0
� B(·)f(·)−K(·)T f(0), Zs � ds

+
∫ ∫

[0,t]×E
1k≤Ns− � f, 2δ

I
(k)
s−
,0 − δI(k)

s−
,A

(k)
s−
� 10≤θ≤m1(s,k,Z)Q(ds, dk, dθ)

+
∫ ∫

[0,t]×E
1k≤Ns− � f, δ

I
(k)
s−
,0 + δ

I
(k)
s−

+1,0 − δI(k)
s−
,A

(k)
s−
� 1m1(s,k,Z)≤θ≤m2(s,k,Z)Q(ds, dk, dθ)

+
∫ ∫

[0,t]×E
1k≤Ns− � f, 2δ

I
(k)
s−

+1,0 − δI(k)
s−
,A

(k)
s−
� 1m2(s,k,Z)≤θ≤m3(s,k,Z)Q(ds, dk, dθ)

with its predictable quadratic variation given by

〈
Mf ,Mf

〉
t

=
∫ t

0

[ J∑
j=1

∫
R+

[� f, 2δj,0 − δj,a � ]2bj(a)p(j)
2,0Zs(dj, da)

+
J∑
j=1

∫
R+

[� f, δj,0 + δj+1,0 − δj,a � ]2bj(a)p(j)
1,1Zs(dj, da)

+
J∑
j=1

∫
R+

[� f, 2δj+1,0 − δj,a � ]2bj(a)p(j)
0,2Zs(dj, da)

]
ds .

(III.20)
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The proofs of Theorem III.6 and Lemma III.5 are classical and provided in Appendix
subsection A.1.2 for reader convenience. We now have all the elements to prove Theorem
III.3.

Proof of Theorem III.3. We apply the Dynkin formula (III.5) with the dual test function φ
and obtain

� φ,Zt �=� φ,Z0 � +λc
∫ t

0
� φ,Zs � ds+Mφ

t .

As φ is bounded, � φ,Zt � has finite expectation for all time t according to (III.19). Thus,

E
[
� φ,Zt �

]
= E

[
� φ,Z0 �

]
+ λcE

[ ∫ t

0
� φ,Zs � ds

]
. (III.21)

Using the Fubini theorem and solving equation (III.21), we obtain

E
[
� φ,Zt �

]
= eλctE

[
� φ,Z0 �

]
⇒ E

[
e−λct � φ,Zt �

]
= E

[
� φ,Z0 �

]
. (III.22)

Hence, W φ
t = e−λct � φ,Zt � is a martingale. According to martingale convergence theo-

rems (see Theorem 7.11 in [83]), W φ
t converges to an integrable random variable W φ

∞ ≥ 0,
P–p.s. when t goes to infinity. To prove that W φ

∞ is nondegenerated, we will show that the
convergence holds in L2. Indeed, from the L2 convergence, we deduce the L1 convergence.
Then, using almost sure convergence and applying the the dominated convergence theorem,
we have

E[W φ
∞] = E[ lim

t→∞
W φ
t ] = lim

t→∞
E[W φ

t ] = E[W φ
0 ] > 0.

Consequently,W φ
∞ is nondegenerated. To show the L2 convergence, we compute the quadratic

variation of W φ. Applying the Ito formula (see [151] p. 78-81) with F (t,� φ,Zt � ) =
e−λct � φ,Zt � , we deduce

W φ
t =� φ,Z0 � +

∫ t

0

[ ∫
E
e−λcs(∂aφ(j)(a)− λcφ(j)(a))Zs(dj, da)

]
ds

+
∫ ∫

[0,t]×E
1k≤Ns−e

−λcs � φ, 2δ
I

(k)
s−
,0 − δI(k)

s−
,A

(k)
s−
� 10≤θ≤m1(s,k,Z)Q(ds, dk, dθ)

+
∫ ∫

[0,t]×E
1k≤Ns−e

−λcs � φ, δ
I

(k)
s−
,0 + δ

I
(k)
s−

+1,0 − δI(k)
s−
,A

(k)
s−
� 1m1(s,k,Z)≤θ≤m2(s,k,Z)Q(ds, dk, dθ)

+
∫ ∫

[0,t]×E
1k≤Ns−e

−λcs � φ, 2δ
I

(k)
s−

+1,0 − δI(k)
s−
,A

(k)
s−
� 1m2(s,k,Z)≤θ≤m3(s,k,Z)Q(ds, dk, dθ) .

As LDφ = λcφ, we have∫
E
(∂aφ(j)(a)− λcφ(j)(a))Zs(dj, da) =� B(·)φ(·)−KT (·)φ(0), Zs � .

Consequently, from (III.5), we deduce

W φ
t =� φ,Z0 � +

∫ t

0
e−λcsdMφ

s . (III.23)
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where the latter integral is defined path by path as a Stieltjes integral since M is a finite
variation process (see 8.4, p.215 [83]). According to (III.20) and (III.23), we get

〈
W φ
· ,W

φ
·

〉
t

=
∫ t

0
e−2λcsd

〈
Mφ,Mφ

〉
s
ds

=
∫ t

0
e−2λcs

[∫
E

(
p

(j)
2,0[� φ, 2δj,0 − δj,a � ]2 + p

(j)
1,1[� φ, δj,0 + δj+1,0 − δj,a � ]2

+p(j)
0,2[� φ, 2δj+1,0 − δj,a � ]2

)
bj(a)Zs(dj, da)

]
ds .

First, note that φ(j) is null when j ∈ Jc + 1, JK. Then, since φ(j) is bounded upper and
lower (see (III.12)) for all j ∈ J1, cK and bj are bounded functions, we deduce that there exists
a constant K > 0 such that

〈
W φ,W φ

〉
t
≤ K

∫ t

0
e−2λcs

 c∑
j=1

∫ +∞

0
φ(j)(a)Zs(dj, da)

 ds = K

∫ t

0
e−2λcs � φ,Zs � ds .

Then, taking expectation and using the Fubini theorem, we obtain :

E
[〈
W φ,W φ

〉
t

]
≤ K

∫ t

0
e−2λcsE [� φ,Zs �] ds .

Using (III.22), we deduce that

E
[〈
W φ,W φ

〉
t

]
≤ K

∫ t

0
e−λcsE [� φ,Z0 �] ds ≤ K

∫ ∞
0

e−λcsE [� φ,Z0 �] ds <∞ .

Then, since W φ
t is a L2–martingale, we deduce that (W φ

t )2 −
〈
W φ,W φ

〉
t
is a martingale.

Taking expectation and applying Doob’s inequality (see Theorem 20 p.11, [151]), we deduce
that, for all T ≥ 0,

E[ sup
t≤T

(
W φ
t

)2
] ≤ K

∫ ∞
0

e−λcsE [� φ,Z0 �] ds ,

so that E[ supt<∞
(
W φ
t

)2
] < ∞. Since

(
W φ
t

)2
≤ supt<∞

(
W φ
t

)2
, applying the dominated

convergence theorem, we obtain the L2–convergence of W φ
t .

III.4.4 Asymptotic study of the renewal equations
We now turn to the study of renewal equations associated with the branching process Z. Fol-
lowing [65] (Chap. VI), we introduce generating functions that determine the cell moments.
Throughout this subsection, we consider a ∈ R+∪{+∞}. We recall that Y (j,a)

t = 〈Zt,1j1≤a〉
and Y a

t = (Y (j,a)
t )j∈J1,JK. For s = (s1, ..., sJ) ∈ RJ and j = (j1, ..., jJ) ∈ NJ , we use classical

vector notation sj =
∏J
i=1 s

ji
i .

Definition III.2. We define F a[s; t] = (F (i,a)[s; t])i∈J1,JK where F (i,a) is the generating func-
tion associated with Y a

t starting with Z0 = δi,0:

F (i,a)[s; t] := E[sY at |Z0 = δi,0] .
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We obtain a system of renewal equations for F and Ma(t) := (E[Y (j,a)
t |Z0 = δi,0])i,j∈J1,JK.

Lemma III.6 (Renewal equations for F ). For i ∈ J1, JK, F (i,a) satisfies

∀i ∈ J1, JK, F (i,a)[s; t] = (si1t≤a + 1t>a)(1− Bi(t)) + f (i)(F a[s, .]) ∗ dBi(t)

where f (i) is given by f (i)(s) := p
(i)
2,0s

2
i + p

(i)
1,1sisi+1 + p

(i)
0,2s

2
i+1.

Lemma III.7 (Renewal equations for M). For (i, j) ∈ J1, JK2, Ma
i,j satisfies

Ma
i,j(t) = δi,j(1− Bi(t))1t≤a + 2p(i)

S M
a
i,j ∗ dBi(t) + 2p(i)

L M
a
i+1,j ∗ dBi(t) . (III.24)

The proofs of Lemmas III.6 and III.7 are given in Appendix subsection A.1.2.

Theorem III.7. Under Hypotheses III.1, III.2, III.4 and Hypotheses/Definitions III.2 and
III.3,

∀i ∈ J1, JK, ∀k ∈ J0, J − iK, Ma
i,i+k(t) ∼ M̃i,i+k(a)eλi,i+kt, t→∞

where λi,i+k = max
j∈Ji,i+kK

λj,

M̃i,i(a) =
∫ a

0 (1− Bi(t))e−λitdt
2p(i)
S

∫∞
0 tdBi(t)e−λitdt

(III.25)

and for k ∈ J1, J − iK,

M̃i,i+k(a) =



2p(i)
L dB∗i (λi,i+k)

1− 2p(i)
S dB∗i (λi,i+k)

M̃i+1,i+k(a), if λi,i+k 6= λi (i)

2p(i)
L dB∗i (λi)

2p(i)
S

∫∞
0 tdBi(t)e−λitdt

∫ ∞
0

Ma
i+1,i+k(t)e−λitdt, if λi,i+k = λi(ii).

(III.26)

Proof. Let the mother cell index i ∈ J1, JK. As no daughter cell can move upstream to its
mother layer, the mean number of cells on layer j < i is null (for all t ≥ 0 and for j < i,
Ma
i,j(t) = 0). We consider the layers downstream the mother one (j ≥ i) and proceed by

recurrence:

Hk : ∀i ∈ J1, J − kK, Ma
i,i+k(t) ∼ M̃i,i+k(a)eλi,i+kt, as t→∞ .

We first deal with H0. We consider the solution of (III.24) for j = i:

∀t ∈ R+, Ma
i,i(t) = (1− Bi(t))1t≤a + 2p(i)

S M
a
i,i ∗ dBi(t) .

We recognize a renewal equation as presented in [65](p.161, eq.(1)) for Mi,i, which is similar
to a single type age-dependent process. The main results on renewal equations are recalled
in Appendix subsection A.1.3. Here, the mean number of children is m = 2p(i)

S > 0 and the
lifetime distribution is Bi. From Hypothesis III.2, we have∫ ∞

0
(1− Bi(t))1t≤ae−λitdt ≤

1
b̄i

∫ ∞
0

1t≤adBi(t)e−λitdt ≤
1
b̄i

∫ ∞
0

dBi(t)e−λitdt <∞
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according to Hypothesis/Definition III.1. Thus, t 7→ 1t≤a (1− Bi(t)) e−λit is in L1(R+).
Using Hypothesis/Definition III.1 and Hypothesis III.4, we apply Corollary III.1 and Lemma
A.3 in the Appendix subsection A.1.3 (see lemma 2 of [65], p.161) and obtain

Ma
i,i(t) ∼ M̃i,i(a)eλit, as t→∞, where M̃i,i(a) =

∫ a
0 (1− Bi(t))e−λitdt

2p(i)
S

∫∞
0 tdBi(t)e−λitdt

.

Hence, H0 is verified. We then suppose that Hk−1 is true for a given rank k − 1 ≥ 0 and
consider the next rank k. According to (III.24), Ma

i,i+k is a solution of:

Ma
i,i+k(t) = 2p(i)

S M
a
i,i+k ∗ dBi(t) + 2p(i)

L M
a
i+1,i+k ∗ dBi(t) . (III.27)

We distinguish two cases : λi,i+k 6= λi and λi,i+k = λi. We first consider λi,i+k = λi and show
that f(t) = Ma

i+1,i+k ∗ dBi(t)e−λit belongs to L1(R+). Let R > 0. Using the Fubini theorem,
we deduce that:∫ R

0
f(t)dt =

∫ R

0

[∫ R

u
e−λi(t−u)Ma

i+1,i+k(t− u)dt
]
e−λiudBi(u)du .

Applying a change of variable and using that Ma
i+1,i+k(t) ≥ 0 for all t ≥ 0, we have∫ R

u
e−λi(t−u)Ma

i+1,i+k(t− u)dt ≤
∫ R

0
e−λitMa

i+1,i+k(t)dt .

According to Hk, we know that Ma
i+1,i+k(t) ∼ M̃i+1,i+k(a)eλi+1,i+kt as t→∞. Then,∫ R

0
e−λitMa

i+1,i+k(t)dt =
∫ R

0
e−λi+1,i+ktMa

i+1,i+k(t)e−(λi−λi+1,i+k)tdt ≤ K
∫ R

0
e−(λi−λi+1,i+k)tdt <∞

when R → ∞, as λi = λi,i+k > λi+1,i+k. Moreover,
∫ R

0 e−λiudBi(u)du ≤ dB∗i (λi) < ∞
according to Hypothesis/Definition III.2. Finally, we obtain an estimate for

∫ R
0 f(t)dt that

does not depend on R. So, f is integrable. We can apply Lemma A.3 and deduceMa
i,i+k(t) ∼

M̃i,i+k(a)eλi,i+kt, as t→∞, with M̃i,i+k(a) given in (III.26)(ii).
We now consider the case λi,i+k 6= λi and introduce the following notations :

M̂a
i,i+k(t) = Ma

i,i+k(t)e−λi,i+kt, d̂Bi(t) = dBi(t)
dB∗i (λi,i+k)

e−λi,i+kt .

In this case, λi,i+k > λi, so that 2p(i)
S dB∗i (λi,i+k) < 2p(i)

S dB∗i (λi) = 1. We want to apply
Lemma A.4 (see lemma 4 of [65], p.163). We rescale (III.27) by e−λi,i+kt and obtain the
following renewal equation for M̂a

i,i+1:

M̂a
i,i+k(t) = 2p(i)

S dB
∗
i (λi,i+k)M̂a

i,i+k ∗ d̂Bi(t) + 2p(i)
L M

a
i+1,i+k ∗ dBi(t)e−λi,i+kt .

We compute the limit of f(t) = Ma
i+1,i+k ∗ dBi(t)e−λi,i+kt:

f(t) =
∫ ∞

0
1[0,t](u)Ma

i+1,i+k(t− u)e−λi,i+k(t−u)e−λi,i+kudBi(u)du .

According to Hk−1, Ma
i+1,i+k(t) ∼ e−λi+1,i+ktM̃i+1,i+k(a). As λi,i+k 6= λi, we have λi,i+k =

λi+1,i+k. Hence,Ma
i+1,i+k(t)e−λi,i+kt is dominated by a constantK such that

∫∞
0 Ke−λi,i+kudBi(u)du <
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∞. We apply the Lebesgue dominated convergence theorem and obtain lim
t→∞

f(t) = M̃i+1,i+k(a)dB∗i (λi,i+k).
Applying Lemma A.4, we obtain that:

lim
t→∞

M̂a
i,i+k(t) = 2p(i)

L M̃i+1,i+k(a)dB∗i (λi,i+k)
1− 2p(i)

S dB∗i (λi,i+k)
= M̃i,i+k(a),

and the recurrence is proved.

We have now all the elements to prove Theorem III.4.

Proof of Theorem III.4. According to Theorem III.7, we have

∀j ∈ J1, JK, ma
j (t) ∼ M̃1,j(a)eλ1,jt as t→∞. (III.28)

When j < c, we deduce directly from (III.28) that m̃j(a) = 0. We then consider the leading
layer j = c. For k ∈ J1, c − 1K, λk,c 6= λk so M̃k,c(a) is related to M̃k+1,c(a) by (III.26)(i).
Thus, we obtain

m̃c(a) =
c−1∏
m=1

2p(m)
L dB∗m(λc)

1− 2p(m)
S (dB∗m)(λc)

M̃c,c(a) .

M̃c,c(a) is given by (III.25) and we deduce m̃c(a). We turn to the layers j > c. For k ∈
J1, c− 1K, we have λc = λk,j 6= λk. We obtain from (III.26)(i)

m̃j(a) =
c−1∏
m=1

2p(m)
L dB∗m(λc)

1− 2p(m)
S (dB∗m)(λc)

M̃c,j(a). (III.29)

Then, as λc = λc,j , we use (III.26)(ii) and obtain:

M̃c,j(a) = 2p(c)
L dB∗c (λc)

2p(c)
S

∫∞
0 te−λctdBc(t)dt

∫ ∞
0

Ma
c+1,j(t)e−λctdt. (III.30)

Then, we apply the Laplace transform to (III.24) for α = λc. Theorem III.7 and the fact
that λc = λc,j guarantee that we can apply the Laplace transform to (III.24) (see details in
Appendix subsection A.1.3). We obtain

∫ ∞
0

Ma
c+1,j(t)e−λctdt =

j−1∏
k=c+1

2p(k)
L dB∗k(λc)

1− 2p(k)
S dB∗k(λc)

×
∫ a

0 ρ̂
(j)(s)ds

(1− 2p(j)
S dB∗j (λc))× ρ̂(j)(0)

. (III.31)

Combining (III.29), (III.30) and (III.31) and the value of ρ̂(j)(0) given in (III.8), we obtain
m̃j(a).

We also study the asymptotic behavior of the second moment in Appendix subsection
A.1.3 (see Theorem A.1).

Remark III.3. These results can be extended in a case when the mother cell is not necessary
of age 0 (for the one layer case, see [65], p.153).

Remark III.4. Using the same procedure as in Theorem III.7, we can obtain a better estimate
for the convergence of the deterministic solution ρ than that in Theorem III.2. Indeed, we
can consider the study of h(t, x) = e−λ1,jtρ(t, x)−ηρ̂1,j(x) where ρ̂1,j is the eigenvector of the
subsystem composed of the jth first layer, and find the proper function φ1,j.
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III.4.5 Numerical illustration

We perform a numerical illustration with age independent division rates (which satisfy Hy-
pothesis III.2). Figure III.4a illustrates the exponential growth of the number of cells, either
for the original solution of the model (III.4) (left panel) or the renormalized solution (right
panel), checking the results given in Theorems III.4 and A.1. Figure III.4b instantiates the
effect of the parameters b1 and p

(1)
S on the leading layer (left panel) and the asymptotic

proportion of cells (right panel). Note that the layer with the highest number of cells is
not necessary the leading one. As can be seen in Figure III.5, the renormalized solutions
of the SDE (III.4) and PDE (III.5) match the stable age distribution ρ̂ (see Theorems III.1
and III.4). Asymptotically, the age distribution decreases with age, which corresponds to
a proliferating pool of young cells, and is consistent with the fact that ρ̂(j) is proportional
to e−λcaP[τ (j) > a]. The convergence speeds differ between layers (here, the leading layer
is the first one and the stable state of each layer is reached sequentially), corroborating the
inequality given in Theorem III.2.

III.5 Parameter calibration
Throughout this part, we will work under Hypotheses III.1, III.5 and III.6. As a consequence,
the intrinsic growth rate per layer can be computed easily:

λj = (2p(j)
S − 1)bj ∈ (−bj , bj) when j < J .

III.5.1 Structural identifiability

We prove here the structural identifiability of our system following [98]. We start with a
technical lemma.

Lemma III.8. Let M be the solution of (III.7). For any linear application U : RJ → RJ ,
we have [∀t,M(t) ∈ ker(U)]⇒ [U = 0].

Proof. Ad absurdum, if U 6= 0 andM(t) ∈ ker(U), for all t, then there exists a nonzero vector
u := (u1, ..., uJ) such that for all t, uTM(t) = 0. This last relation, evaluated at t = 0 and
thanks to the initial condition of (III.7), implies u1 = 0. Then, derivating M , solution of
(III.7), we obtain

d

dt

J∑
j=2

ujM
(j)(t) = 0 ⇒

J∑
j=2

uj [(bj−1 − λj−1)M (j−1)(t) + λjM
(j)(t)] = 0 .

Again, at t = 0, we obtain u2(b1 − λ1) = 0. Because λ1 6= b1, u2 = 0. Iteratively,

∀j ∈ J2, JK, uj

j−1∏
k=1

(bk−1 − λk−1) = 0 ⇒ uj = 0 .

We obtain a contradiction.

We can now prove Theorem III.5.
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(a) Exponential growth and asymptotic behavior

(b) Leading layer index and asymptotic proportion of cells

Fig. III.4 Exponential growth and asymptotic moments. Figure III.4a:
Outputs of 1000 simulations of the SDE (III.4) according to Algorithm 3 with p(j)

S ,
bj given in Figure III.1b, p(j)

1,1 = 0 and Z0 = 155δ1,0. Left panel: the solid color
lines correspond to the outputs of the stochastic simulations while the black stars
correspond to the numerical solutions of the ODE (III.7) with the initial number
of cells on the first layer N = 155 (orange: Layer 1, red: Layer 2, green: Layer
3, blue: Layer 4). Right panel: the color solid lines correspond to the renor-
malization of the outputs of the stochastic simulations by e−λct. The black stars
are the numerical solutions of the ODE (III.7). The color and black dashed lines
correspond to the empirical means of the simulations and the analytical asymp-
totic means (155m̃j(∞), Theorem III.4), respectively. The color and black dotted
lines represent the empirical and analytical asymptotic 95% confidence intervals
(1.96

√
vj(∞), Corollary A.1), respectively. Figure III.4b: Leading layer index as

a function of b1 and p
(1)
S (left panel) and proportion of cells per layer in asymp-

totic regime with respect to p(1)
S (right panel). In both panels, b satisfies (c)) and

p
(j)
S = −15 ∗ p(1)

L ∗ (j − 1)2 − 110 ∗ p(1)
L ∗ (j − 1) + p

(1)
S .

Proof of Theorem III.5. According to [98], the system (III.7) is P-identifiable if, for two sets



112 Chapter III. Modeling the compact growth phase

Fig. III.5 Stable age distribution per layer. Age distribution at different times
of one simulation of the SDE (III.4) and of the PDE (III.5) using the algorithms
described in Appendix a) and b), respectively. We use the same parameters as in
Figure III.4. From top to bottom: t = 5, 25, 50 and 100 days. The color bars rep-
resent the normalized stochastic distributions. The black dashed lines correspond
to the normalized PDE distributions, the color solid lines to the stable age distri-
butions ρ̂(j), j ∈ J1, 4K. The details of the normalization of each lines are provided
in A.1.4.

of parameters P and P̃, M(t; P) = M(t; P̃) implies that P = P̃.

∀t ≥ 0,M(t; P) = M(t; P̃)⇒ d

dt
M(t; P) = d

dt
M(t; P̃)

⇒ APM(t; P) = AP̃M(t; P̃) = AP̃M(t; P)
⇒ (AP −AP̃)M(t; P) = 0

So, M(t; P) ∈ ker(AP −AP̃) and, from Lemma III.8, we deduce that AP = AP̃. Thus,{
(2p(j)

S − 1)bj = (2p̃(j)
S − 1)b̃j , ∀j ∈ J1, JK,

2p(j)
L bj = 2p̃(j)

L b̃j , ∀j ∈ J1, J − 1K.

Using that p(j)
L = 1− p(j)

S and Hypothesis III.1, we deduce P = P̃.

III.5.2 Biological application
We now consider the application to the development of ovarian follicles.

a) Biological background

The ovarian follicles are the basic anatomical and functional units of the ovaries. Structurally,
an ovarian follicle is composed of a germ cell, named oocyte, surrounded by somatic cells (see
Figure III.6). In the first stages of their development, ovarian follicles grow in a compact
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way, due to the proliferation of somatic cells and their organization into successive concentric
layers starting from one layer at growth initiation up to four layers.

Fig. III.6 Histological sections of ovarian follicles in the compact growth
phase. Left panel: one-layer follicle, center panel: three-layer follicle, right panel:
four-layer follicle. Courtesy of Danielle Monniaux.

b) Dataset description

We made use of a dataset providing us with morphological information at different develop-
ment stages (oocyte and follicle diameter, total number of cells), and acquired from ex vivo
measurements in sheep fetus [116]. In addition, from [121, 122], we can infer the transit times
between these stages: it takes 20 days to go from one to three layers and 15 days from three
to four layers. Hence (see Table III.1a), the dataset consists of the total numbers of somatic
cells at three time points.

We next take advantage of the spheroidal geometry and compact structure of ovarian
follicles to obtain the number of somatic cells in each layer. Spherical cells are distributed
around a spherical oocyte by filling identical width layers one after another, starting from
the closest layer to the oocyte. Knowing the oocyte and somatic cell diameter (dO and ds,
respectively) and, the total number of cells N exp, we compute the number of cells on the jth
layer according to the ratio between its volume V j and the volume of a somatic cell V s:

Initialization: j ← 1, V s ← πd3
s

6 , N ← N exp

While N > 0 :

V j ← π
6
[
(dO + 2 ∗ j ∗ ds)3 − (dO + 2 ∗ (j − 1) ∗ ds)3]

Nj ← min(V jV s , N), N ← N −Nj , j ← j + 1

J ← j − 1

The corresponding dataset is shown in the four panels of Figure III.3.

c) Parameter estimation

Before performing parameter estimation, we take into account additional biological specifi-
cations on the division rates. The oocyte produces growth factors whose diffusion leads to a
decreasing gradient of proliferating chemical signals along the concentric layers, which results
to the recurrence law (c)) similar as that initially proposed in [1]. Considering a regression
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t = 0 t = 20 t = 35
Data points (62) 34 10 18
Total cell number 113.89 ±

57.76
885.75 ±
380.89

2241.75 ±
786.26

Oocyte diameter
(µm)

49.31 ±
8.15

75.94 ±
10.89

88.08 ±
7.43

Follicle diameter
(µm)

71.68 ±
13.36

141.59 ±
17.11

195.36 ±
23.95

(a) Summary of the dataset
Layer j p

(j)
S bj λj

1 0.6806 0.1146 0.0414
2 0.4837 0.0435 -0.0014
3 0.9025 0.0269 0.02165
4 1 0.0194 0.0194

(b) Estimated values of the parameters.

Table III.1 – Experimental dataset and estimated values of the parameters. Table
III.1b. The estimated value of α and the initial number of cells are α = 1.633 and N ≈ 155,
respectively. For j ≥ 2, the bj parameter values (in blue) were computed using formula
(c)). The λj values were computed using formula (III.5). The 95%-confidence intervals
are b1 ∈ [0.0760; 0.1528], α ∈ [0.0231; 5.685], N ∈ [126.4; 185.4], p(1)

S ∈ [0.6394; 0.7643],
p

(2)
S ∈ (0; 0.7914] and p(3)

S ∈ [0.6675; 0.9739].

model with an additive Gaussian noise, we estimate the model parameters to fit the changes
in cell numbers in each layer (see Appendix subsection A.1.5 for details). The estimated
parameters are provided in Table III.1b and the fitting curves are shown in Figure III.3. We
compute the profile likelihood estimates [138] and observe that all parameters are practically
identifiable except p(2)

S (Figure A.1a). In contrast, when we perform the same estimation
procedure on the total cell numbers, most of the parameters are not practicality identifiable
(dataset in Table III.1a, see detailed explanations in Appendix subsection A.1.5).

III.6 Conclusion
In this work, we have analyzed a multitype age-dependent model for cell populations sub-
ject to unidirectional motion, in both a stochastic and deterministic framework. Despite the
nonapplicability of either the Perron–Frobenius or Krein–Rutman theorem, we have taken
advantage of the asymmetric transitions between different types to characterize long time
behavior as an exponential Malthus growth, and obtain explicit analytical formulas for the
asymptotic cell number moments and stable age distribution. We have illustrated our results
numerically, and studied the influence of the parameters on the asymptotic proportion of
cells, Malthus parameter and stable age distribution. We have applied our results to a mor-
phodynamic process occurring during the development of ovarian follicles. The fitting of the
model outputs to biological experimental data has enabled us to represent the compact phase
of follicle growth. Thanks to the flexibility allowed by the expression of morphodynamic laws
in the model, we intend to consider other non-compact growth stages.
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III.7 Complements on the dataset treatment (unpublished)
In this section, we give complements on the dataset treatment presented in subsection III.5.2
for which we need the number of cell per layer, which is not provided as such in the dataset.

We use the dataset composed of the three categories: “t=0”, “t=20” and “t=35” (pre-
sented in section I.2.2), for which we have the total cell and layer number, and the oocyte
and follicle diameter. Reconstructing the cell distribution into the different layers amounts
to distributing objects of a given volume in a succession of nested hollow balls representing
the layers. To reconstruct this information, we first recover the mean cell volume from the
available information (oocyte and follicle diameter, and total cell number). To estimate the
layer thickness, we model the cell volume considering two idealized, yet realistic, options: a
sphere or a cube. To select among these two options, we made use of the observed number
of layers.

Before starting, we first made the following assumptions:

i) all the somatic cells are incompressible and have the same volume VS . Thus, all cell
volume changes, such those induced by mitosis, are neglected.

ii) in the same way as in [1], the follicle and oocyte shapes can both be approximated by
balls of diameter df and dO, respectively.

iii) the cells are distributed compactly around the oocyte (no gap).

Applying assumptions ii) and iii), the somatic cell volume is deduced for each follicle
i ∈ J1, 101K from the follicle and oocyte diameter and the total somatic cell number Ni by

(VS)i = 4
3π

(df2 )3
i − (dO2 )3

i

Ni
. (III.32)

We observe in Figure III.7 (right-panel) a large variability in the somatic cell volume distri-
bution: it varies between 950 and 2,500 µm3 and increases with the oocyte diameter. Due
to this high variability, we decide to change course and model the volume of a somatic cell
considering different realistic cell geometries.
Using the definition of an elementary volume, we first write the average somatic cell volume
(VS)i for each follicle of our dataset i ∈ J1, 101K,

(VS)i =
∫ (dS)i

0

∫ (δθ)i

0

∫ (δφ)i

0
r2 sin(θ)drdθdφ = σi(dS)3

i ,

where (δθ)i and (δφ)i are constants that characterize the volume of a cell i. We merge these
two constants into a single one: the constant σi, corresponding to the volume type constant
(sphere or cube). We thus obtain an analytic formula linking the somatic cell volume (VS)i
to the layer tickness dS . Note that we now only need to infer the layer tickness dS and the
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constant σi.

To that end, we consider two different options for the volume constant σ:

• 3D method (sphere): following [1], we suppose that a somatic cell is a sphere. Thus,
we have

dS
2 = 3

√
3

4πVS . (III.33)

• 3D method (cube): we suppose that a somatic cell is a cube. Thus, we have

dS = 3
√
VS . (III.34)

To choose between these two approaches, we compare the thickness dS to that obtained with
a 1D approach using the number of observed layers Nlayer:

• 1D method:
dS = df − dO

2Nlayer
. (III.35)
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Fig. III.7 Estimated somatic cell diameter and volume. Right-panel: we
apply Formula (III.32) and compute the somatic cell volume (in µm3) for each
follicle of our dataset. Left-panel: for each follicle in our dataset, we apply Formulas
(III.33), (III.34) and (III.35) and represent the result with respect to the oocyte
diameter (in µm). We then make a linear regression for each method (1D, sphere
3D and cube 3D) and obtain: 1D method: d̄G = 9.11± 1.00 µm, α = 0.032± 0.02;
3D method (sphere): d̄G = 11.30± 1.00 µm, α = 0.035± 0.008; 3D method (cube):
d̄G = 18.21± 0.82 µm, α = 0.058± 0.012.

We apply those three methods and show the results in Figure III.7 (left-panel). For the three
methods, a small increase in the somatic cell diameter with respect to the oocyte is observed
and is mostly due to the emergence of some gaps (antrum formation). The 1D method and
the 3D method (sphere) lead to comparable results: the somatic cell diameter evolves between
9 and 11 µm, while this number evolves between 20 and 25 µm for the 3D method (cube).
Among the two 3D methods, the sphere hypothesis gives more comparable results with our
control method (1D) than the cube hypothesis, we thus select the 3D method (sphere). We
turn now to the calibration of the somatic cell diameter dS . Considering several values for
dS , cells were distributed among layers using the algorithm presented in subsection III.5.2
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Fig. III.8 Assessment of the somatic cell diameter dS. Using the algorithm
presented in subsection III.5.2, we distribute cells among layers for each follicle
i ∈ J1, 101K taking different values for dS (9.0, 9.5, 10.0, 10.5 and 11.0). We then
compute the number of layers obtained. In each case, we compute the least square
error r2 obtained between the estimated number of layers and the observed one.
The horizontal dashed line corresponds to the threshold of two layers while the
solid black line is the median line.

for each follicle. From this, we deduce the estimated number of layers that we compare to
the observed ones (least square error, see details in Figure III.8). We choose the dS with the
lowest r2-values such that the follicles with less than 2 layers observed have less than 2 layers
with our estimation procedure. We thus select dS = 9.5µm.

The cell distribution into the different layers is deduced from the layer thickness dS and
the somatic cell volume VS : cells are distributed around a spherical oocyte by filling dS–thick
layers one after another, starting from the layer closest to the oocyte (see algorithm proposed
in subsection III.5.2).
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Chapter IV
Modeling the compact growth phase:
complementary works

This chapter is dedicated to reflections that followed the work presented in the previous
chapter (and published in [33]). We present two other approaches based on spatial models
that could represent the coupled dynamics between the oocyte and the somatic cells.

IV.1 Back on the [CMMS] model

We first come back to the [CMMS] model (see subsection III.1.1) where the spatial cell
position is represented by volume elements (L(i,j,k)

t ). In this model, cells may be followed one
by one and have a volume. However, the analysis of the CMMS model is complex due to its
non-linearity. A first common practice consists in changing the scale that here can be either
the population or the cell size scale.

This question has been tackled recently, in [3], in the course of this thesis, where the
author investigates the large population and small cell size limits of the [CMMS] model. In
addition, the existence of solutions of the [CMMS] model was also shown. We present below
the results regarding the change of scales.

We recall that in the [CMMS] model, the locations of cells are given by their spherical
coordinates (r(t), θ, φ) with r(t) > rO(t) (the oocyte radius at time t). Note that the spatial
component, r, is time-dependent here. To avoid coping with a moving state space, the
author chooses an equivalent formalism: the cell location in the simplified model is (r, θ, φ)
that corresponds to (r − 1 + rO(t), θ, φ) in space. The location of cells then belongs to the
set S = R3/B(0, 1), where B(0, 1) = {(r, θ, φ) : r < 1}.
Let ε be the diameter of a somatic cell. The i-th layer is then defined by

Lεi = {(r, θ, φ) ∈ S : r ∈ [1 + (i− 1)ε, 1 + iε[}.

In the same way as the [CMMS] model, the subdomains Lεi,j,k are defined as

Lεi,j,k = {(r, θ, φ) ∈ S : r ∈ [1 + (i− 1)ε, 1 + iε[ ,

θ ∈
[
π
j − 1
N

, π
j

N

[
, φ ∈

[
−π + 2k − 1

N
π,−π + 2 k

N
π

[
},
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where N ∈ N∗. For a given scaling population size M ∈ N∗ and a cell size ε > 0, the whole
population is represented by a point measure Zt, t ≥ 0,

ZM,ε
t (da, dp) = 1

M

NM,ε
t∑
n=1

δ(aM,εn , xM,εn ) ∈MP (R+ × S),

where NM,ε
t is the total cell number at time t. Each cell n is defined by its age aM, ε

n ∈ R+ and
spatial position xM, ε

n ∈ S (and not an integer triplet (i, j, k) corresponding to the subdomain
Lεi,j,k).

In [3], the author (P. Michel) considers the limit of (ZM,ε
t (da, dp))ε,M first when M goes

to infinity and ε is fixed. From this law of large number, he obtains a PDE for all ε (weak
limit). Then, taking ε goes to 0, he shows that the limit of this PDE is well-defined and is a
weak solution of the following nonlinear partial differential equation:


(∂t + ∂a)ρ+ div [CρR∇ (1−R)] = 0, t > 0, a > 0, r > 1,
ρ|a=0 = 2

∫+∞
0 B(a, p)ρ(t, a, p)da,

ρ|t=0 = ρ0,
ρ|r=1 = 1,

(IV.1)

with C > 0, and function R = R
(∫

R+
ρ(t, a, p)da V olG(3r2+6r+3)

3r2+6rrO(t)+3rO(t)2

)
is the cell displacement

rate. The density function ρ = ρ(t, a, p) represents the density of cells of age a and spatial
position p = (r, θ, φ) ∈ S at time t ≥ 0. The Dirichlet nonlocal boundary condition ρ|a=0
represents the division events while the Dirichlet boundary condition ρ|r=1 represents the
fact that there is always cells on the boundary of the domain. Remark that in this model,
the cell loss due to division does not appear directly on PDE (IV.1) but seems to be included
in the divergence term (cell displacements).
The oocyte diameter verifies

r′O(t) = (rO(t))α
∫
R+×S

κ(r)ρ(t, a, p)r2sin(θ)da dr dθ dφ, rO(0) = r0,

where κ ∈ C0
b (R+,R+) represents the growth factors secreted by the somatic cells.

One of the author’s interesting conclusions is that there must be a balance between the
renormalization of the number of cells M and the size of a cell ε. If the cell size is fixed,
then the whole space is filled by cells when M goes to infinity while if the cells are too small
and there is not enough of them (M too low), a concentrated mass can be observed on the
boundary of the oocyte. However, according to the author, it is not completely clear that
(ZM,ε

t (da, dp))ε,M converges for all sequences of (εk,Mk) → (0,∞), and it is still an open-
question.

Inspiring from PDE (IV.1), which is a Keller-Segel type, we turn now to models built on
the same formalism in the next subsection. We thus consider models where the cell volume
is very small, such that a continuous model can be used.
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IV.2 Mechanical spatial-structured model

At the follicle level, the cells form a cluster that can be assimilated to a growing fluid. This
more or less incompressible fluid is maintained in a spherical shape by external forces acting
on the outer wall of the follicle. It is also subjected to internal forces from the spherical
oocyte: the oocyte exerts a radial pushing force throughout its growth. The dynamics of a
follicle in the compact growth phase can be represented by two growing nested balls of same
center: the inner ball is the oocyte while the hollow ball represents the somatic cells, which
can be seen as an expanding fluid subjected to pressure forces from both inside and outside.
We present this model in Figure IV.1. The oocyte is represented by the domain ΩO(t) =
BrO(t)(O) corresponding to the inner ball of radius rO(t) (oocyte radius), and subjected to
radial growth of speed ~vO(x, t) = d

dtrO(t)~er. The cells constituting the follicle are gathered
within the domain Ω(t) (see Figure IV.1) such that the external forces are exerted on the
free boundary ∂Ω(t)\∂ΩO(t) while the internal forces are exerted on the pushing boundary
∂ΩO(t), which is the interface between the oocyte and the follicle.

Fig. IV.1 Spatial-structured model for the compact growth phase

The hypothesis of incompressibility and compactness of cells naturally leads us to consider
so-called free boundary problems such as the Hele-Shaw model.

a) Free boundary problem: Hele-Shaw model

The Hele-Shaw model is a fluid mechanics model introduced in 1898 as part of a study on the
modeling of the resistance surface between water and air. Nowadays, this model more gen-
erally describes the dynamics of the boundary between two incompressible and non-miscible
fluids where one of them is passive. Even more recently, this model has attracted the atten-
tion of modellers working on the evolution of solid tumors, see for example [152, 153, 154].

In the simplest tumor growth models, the expansion of a spherical tumor is represented by
cell division mechanisms regulated by nutrients from outside the tumor (external boundary).
Since the fluid constituted by the tumor cells is assumed to be incompressible, the cell density
is constant. The dynamics of the tumor is then represented by the pressure of the fluid p1,

1It is a consequence of the Navier-Stokes equation, see for instance Chapter 0.2 of [155].
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which can be linked to the velocity of the fluid via Darcy’s law2. Fluid movement is induced
by an increase in pressure by nutrient-modulated cell division (see Chapter 6 of [154]):

−∆p = G(c(x, t)), x ∈ Ω(t),
−∆c+ λc = 0, x ∈ Ω(t),
p(x, t) = 0, x ∈ ∂Ω(t),
c = cb, x ∈ ∂Ω(t).

where G ∈ C1 is a positive function representing the net growth rate of cells as a function of
available nutrients c. The parameter λ represents the consumption rate of nutrients. The nu-
triments diffuse from the external boundary of the tumor (blood concentration) at a constant
concentration cb up to the core of the tumor. The null Dirichlet boundary condition for the
pressure implies that there are no cells outside domain Ω(t) (and therefore no movements).
Assuming that for all t ≥ 0, Ω(t) = BR(t)(0) is the ball of radius R(t) (tumor radius), one
can deduce the law

Ṙ(t) = Sd−1
R(t)d−1

∫
Ω(t)

G(c(x, t)dx),

where Sd−1 denotes the constant linked to the sphere surface of dimension d. For example,
S2 = 4π. The detailed computation will be provided below. Such a formula is classical with
those models. For instance, in [156], the authors also expressed the evolution of a tumor
radius as a function that depends on the cell proliferation rate.

Inspired from this model, we consider the following Hele-Shaw like model for representing
the follicle compact growth phase:

−∆p(x) = b(x), x ∈ Ω(t),
p(x, t) = 0, x ∈ ∂Ω(t)\∂ΩO(t),
v(x, t) · νO = −γ∇p(x, t) · νO = ~vO(x, t) · νO, x ∈ ∂ΩO(t)

(IV.2)

where:
• v is the velocity field of the cells (verifies the Darcy’s law: v = −γ∇p),

• the sets ΩO(t) and Ω(t) are the spheres of radius rO(t) and rF (t) = rO(t) + rC(t),
respectively.

• b is the net growth rate
The Dirichlet condition on the boundary ∂Ω(t)\∂ΩO(t) represents a zero flux condition while
the Neumann condition on the boundary ∂ΩO(t) represents the effect of the pushing bound-
ary.
This model therefore explicitly re-introduces the effect of the oocyte on the cells. To take
into account the impact of cells on oocyte growth, a behavioural law could be added based
on those proposed in [1].
Proposition IV.1. Suppose that Ω(t) = BrF (t)(t) such that rF (t) < ∞ and ΩO(t) =
BrO(t)(t), where rF (t) and rO(t) are the follicle and oocyte radius, respectively. Supposing
that there exists a solution p ∈ H2(Ω(t)) of system (IV.2). Then,

d

dt
rF (t)

∫
∂Ω(t)\∂ΩO(t)

dx = γ

∫
Ω(t)

b(x)dx+ d

dt
rO(t)

∫
∂ΩO(t)

dx. (IV.3)
2The velocity field v is linked to the pressure field p by: v = −γ∇p, where γ is a diffusion constant.
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Proof. Since Ω(t) is bounded and p ∈ H2(Ω(t)), we can integrate the Poisson equation of
system (IV.2) on the whole domain Ω(t) and apply the Green formula3. We deduce that

−
∫

Ω(t)
∆p(x)dx = −

∫
∂Ω(t)

∇p(x) · ν(x, t)dx

= −
∫
∂Ω(t)\∂ΩO(t)

∇p(x) · ν(x, t)dx−
∫
∂ΩO(t)

∇p(x) · ν(x, t)dx.

Since ∇p(x) · ν(x, t) = − 1
γ v(rF (t), t) = d

dtrF (t) on ∂Ω(t)\∂ΩO(t) and ∇p(x) · ν(x, t) =
− 1
γ~vO(rO(t), t) · ν(x, t) = vO(rO(t), t) on ∂ΩO(t), we deduce first that:

−
∫

Ω(t)
∆p(x)dx = 1

γ
v(rF (t), t)

∫
∂Ω(t)\∂ΩO(t)

dx− 1
γ
vO(rO(t), t)

∫
∂ΩO(t)

dx.

then Formula (IV.3).

As we can expect, the follicle diameter evolves according to the oocyte diameter and the
cell growth. The thickness of a follicle eF (t) := rF (t)− rO(t) then verifies

d

dt
eF (t) = 1∫

∂Ω(t)\∂ΩO(t) dx

[
γ

∫
Ω(t)

b(x)dx+ d

dt
rO(t)

(∫
∂ΩO(t)

dx−
∫
∂Ω(t)\∂ΩO(t)

dx

)]
.

Case study: negligible division speed
If the rate of cell division is negligible compared to the growth of the oocyte, the thickness
of the follicle then verifies

d

dt
eF (t) = d

dt
rO(t)

[ ∫
∂ΩO(t) dx∫

∂Ω(t)\∂ΩO(t) dx
− 1

]
= d

dt
rO(t)

[
( rO(t)
eF (t) + rO(t))d−1 − 1

]
,

where d is the dimension of the space Ω(t) ⊂ Rd. Remark that the follicle thickness eF is
constant when d = 1. Supposing that the occyte radius is an increasing function, we also
conclude that the follicle thickness eF decreases if d > 2. These remarks can be interpreted
as follows: in one dimension, the volume is linear while in more than two dimensions, the
volume is a power of the dimension d. Thus, to maintain a constant cell density when d > 2,
the follicle thickness has to decrease.

Case study: comparison with data
Formula (IV.3) is illustrated in Figure IV.2 for different parameter values. The green and
dashed black lines illustrate the irrealistic case of no division: the thickness of the follicle
decreases with the oocyte diameter. The colored lines represent other (more realistic) sit-
uations where there is cell divisions (see details in the legend). It can be seen that if the
model with cell division (magenta and orange lines) seems to fit the data well for an oocyte
diameter less than 100µm, it does not predict the data for an oocyte diameter greater than
100µm (light blue data points). Actually, this is not surprising, these points correspond to
follicles where an antrum has been observed, which implies to refine the model, for instance
the incompressibility hypothesis.

3Green formula: For all u ∈ H2(Ω), v ∈ H1(Ω),
∫

Ω v∆udx = −
∫

Ω∇u · ∇vdx +
∫
∂Ω

∂u
∂n
vds, where H1 and

H2 are Sobolev spaces [157].
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Fig. IV.2 Illustration of Proposition IV.1 and application to data. We
apply Proposition IV.1 for different parameter sets and we draw the follicle diameter
dF (left-panel) and the cell expansion eF (right-panel) with respect to the oocyte
diameter. In all cases, the oocyte radius rO follows a logistic growth that verifies
r′O(t) = α(rO(t) − 20)(rO(t) − 70). The black and green lines represent the case
where there is no division (b = 0) such that either α = −0.0015 (green line) or
α = −0.001875 (black dashed line). The red line corresponds to the parameter α =
−0.0015 and b = 1. The orange lines correspond to b = 1 and either α = −0.001875
(dashed) or α = −0.0012 (plain). The magenta lines correspond to α = −0.0015 and
either b = 1.5 (dashed) or b = 0.67 (plain). In the dataset presented in Chapter 1, we
select follicles of Wild-Type genotype. The red, green and blue points correspond to
the follicles distributed into the different times categories “t=0”, “t=20” an “t=35”
(presented in Table III.1a in Chapter 3, see details in section I.2.2). The light
blue points are the follicles where an antrum has been observed. The grey points
correspond to the remaining follicles that do not belong to any of the categories
enunciated above.

b) Link with the Keller-Segel model: from incompressible to compressible model

The link between incompressible and compressible cell dynamics models is still the subject of
current researches, especially for tumor growth models that we continue to draw inspiration
from (see for example [153, 158, 152]). Unlike incompressible cellular models, compressible
models represent the dynamics of a cell density u(x, t) ∈ [0.1] via a behavioural law (usually
an advection-reaction equation) [159, 160, 156] such as

∂tu+∇ · (uv) = ub(c), x ∈ Rd, t ≥ 0, and −∆c+ ψ(u, c) = 0. (IV.4)
In the example above, cell dynamics is locally regulated by the presence of growth factors

with a concentration of c(x, t). The cells are always considered as a fluid whose speed v
must be prescribed to be able to close the system. One possibility is to simultaneously apply
Darcy’s law and the following pressure law:

v = −∇p and p(u) = uγ .

Concretely, at each point of space, the cellular flow has for speed v which depends on the
local cell density. Since u(t, .) has values in [0, 1], we find that the larger γ, the more homoge-
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neous this velocity is and takes two values: 0 or 1 depending on whether there are cells or not.

We complete this model with a couple of Dirichlet boundary conditions: a boundary
condition to model the oocyte growth and its secreted factors:

v(x, t) · νO = ~vO(x, t) · νO, x ∈ ∂ΩO(t),
c(x, t) = cO(x, t), x ∈ ∂ΩO(t),

and zero-flux boundary conditions on the follicle border

v(x, t) · ν = 0, x ∈ ∂Ω(t)\∂ΩO(t),
c(x, t) = 0, x ∈ ∂Ω(t)\∂ΩO(t),

Thus, the main difference between our model and tumor growth models remains in the exis-
tence of the “pushing” boundary condition coming from the oocyte growth and the fact that
the secreted factors come from the inside of the domain and not the outside.

From compressible to incompressible model. The asymptotic limit γ → +∞ can be
viewed as an incompressible limit. We first explain formally the asymptotic limit: multiplying
Eq. (IV.4) by p′(u), we first obtain that:

∂tp
′(u)−∇p(u) · ∇p(u)− up′(u)∆p(u) = up′(u)b(c).

Since from the pressure law, we have up′(u) = γp(u), we deduce

∂tp
′(u)−∇p(u) · ∇p(u)− γp(u)∆p(u) = γp(u)b(c).

Taking γ → +∞, we obtain the Hele-Shaw model:

−∆p = b(c).

If there is no oocyte (ΩO(t) = ∅), the asymptotic limit in our model is equivalent to that
proved in [161] (see Theorem A.1). In our case, the pushing boundary introduces difficulties
both for the theoretical analyses and the numerical simulations. The analysis of this model
is thus an open-question that will be interesting to study. It will indeed provide information
on the speed balance between the oocyte growth and the cell proliferation.

In Chapter 3, we have chosen to use a formalism where the spatial position of the cell
is represented by a discrete index while we present here models where the spatial position
of cells is continuous. The approach based on the incompressible-compressible limit seems
to be interesting to be studied from many points of view: modeling, simulations, theoretical
analyses, etc. It would also make it possible to take a step forward in the understanding of
the coupling between oocyte growth and cell proliferation. Since these models are derived
from fluid mechanical models, the Eulerian frame of reference4 is used and it is not possible
to follow a single cell trajectory.
Other approaches based on the Lagrangian frame of reference5 can be used to complement

4The Eulerian frame of reference is a way of looking at fluid motion that focuses on specific locations in
the space through which the fluid flows as time passes.

5The Lagrangian frame of reference is a way of looking at fluid motion where the observer follows an
individual fluid parcel as it moves through space and time.
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the cancer-like model and compare the results. Good examples of the Lagrangian frame of
reference are stochastic processes such as the [CMMS] model [1] where the cells are defined by
a spatial position (and an age). For example, the agent-based models, that are becoming more
common in the modeling community, are relevant to represent morphogenesis mechanisms.
The interested reader may refer to the reviews [162, 163]. The agent-based models tackle the
question of the representation of the spatial position of a cell and the management of the
space domain. Lattice-based models such as cellular automata are models where the domain
is fixed while off-lattice models such as vertex models allows the domain to move according
to cell dynamics.



Chapter V
Analysis and numerical simulation of an
inverse problem for a structured cell pop-
ulation dynamics model

This chapter is based on the following article

Frédérique Clément, Béatrice Laroche, Frédérique Robin, Analysis and numerical simu-
lation of an inverse problem for a structured cell population dynamics model. Published
in Mathematical Biosciences and Engineering, 2019, 16(4): 3018-3046 (see [164]).

Cell dynamics are classically investigated in the framework of structured populations,
and especially of the McKendrick–VonFoerster model. The direct problem associated with
the initial and extended formulations of this model has caught most of the attention, both
on the theoretical ground (well-posedness, e.g. [27, 19]) and numerical ground (numerical
approximation of the solutions, e.g. [32, 28, 29]). The inverse problems, intending to recover
model functions, such as the death or division rate, from observable model outputs, have
been much less studied [94, 95, 93, 101, 96], although they have a particular interest in a cell
dynamics context, where a priori information on these rates are often quite poor.

In this work, we study and illustrate the well-posedness of a multiscale inverse prob-
lem (IP), defined from a multi-type version of the linear, age-structured formulation of the
McKendrick–VonFoerster model, in the specific situation where cell death can only occur at
the time of mitosis.
This problem has been initially motivated by a developmental biology issue, namely fol-
liculogenesis, the process of growth and maturation of ovarian follicles. During the first
development stages, the growth of ovarian follicles is mainly driven by the proliferation of the
somatic cells surrounding the oocyte (egg cell), which progressively builds up several concen-
tric cell layers. In this specific application [33], the cell type corresponds to the layer index,
and the cell division rate is type-dependent. At the time of mitosis, cells are likely to move to
the next layer (unidirectional motion), and the (layer-dependent) migration rate can be seen
as the equivalent of a mitosis-induced death rate in the lower layer. As a consequence, the
birth rate (boundary condition at birth with age a = 0) combines an intrinsic contribution
from division and an extrinsic contribution from migration.
Beyond folliculogenesis, such a multi-type formulation can be applied to other cell processes
with either spatially oriented development (e.g. cortical neurogenesis) or commitment to a
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cell lineage or fate (e.g., hematopoiesis).
The multiscale character of the IP ensues from the fact that the observable data (total cell
number on each layer) are available on the macroscopic scale and used to recover the micro-
scopic functions entering the system of interconnected McKendrick–VonFoerster PDEs. More
specifically, we consider here the problem of recovering the age-dependent division rates, and
constant migration rates ruling the cell density in age on each layer, from the knowledge of
the total cell number (zero-order moment of the density) on every layers.

In [33], we have tackled the simplified case of constant (yet layer-dependent) division
rates. In this work, we extend the study to the case of compactly supported (lattice) division
rates, in order to stick to a realistic interpretation of the division rate as a distribution of
intermitotic times ; age is reset to zero at birth, there can be a minimal age compatible with
division, and cells can become quiescent beyond a maximal age. We consider initial conditions
corresponding either to a synchronized (Dirac mass) or non-synchronized cell population
(Dirac comb or continuous function) on the first layer (all other layers are empty). If the
well-posedness of the PDEs (V.1) for a L1 initial condition has been widely studied in the
last decades (see for instance, [27, 19]), the case of Dirac measure initial conditions has been
investigated only recently. For instance, in [34, 165], the authors have introduced the notion
of measure solutions for the conservative renewal equation.

In the single layer (not multi-type) case, similar multiscale IP problems, dealing with an
age-dependent reproduction rate have been studied [94, 93]. In [94], in the case of a strictly
positive, reproduction-independent death rate resulting in an almost sure death before a
maximal age L, the authors have shown, from the characteristic curves, that the birth rate
(boundary condition) verifies a Volterra integral equation of the second kind, and then used
the Fredholm alternative to further recover the reproduction rate. In [93], starting from the
cumulative formulation (renewal equation), and assuming a non-lattice reproduction rate, the
authors have studied both the case of reproduction-dependent and reproduction-independent
death rate to recover the reproduction and death rates. In the reproduction-dependent
(mitosis-dependent) case (see Theorem 4.3), using the Laplace transform, the authors have
shown the IP well-posedness for an initial population synchronized at age 0 (Dirac mass). If,
in addition, the total cell number can be expressed as a series of exponential functions, the
IP well-posedness is also obtained for a non-synchronized initial population represented by a
measure with support on [0, 1] and no atom at 1.
Also, single-scale IP problems, where observation are available at the microscopic level, have
been investigated in a similar age-structured framework [95, 97, 98] or in the size-structured
framework [14, 44, 166]. In the semigroup framework, the problem of recovering the death
rate from the knowledge of both the age distribution at two different time points and the re-
production rate is studied in [95]. A similar problem is considered in [98] from the observation
of a truncated age distribution at any time. Finally, in a steady state configuration, given
a rather mesoscopic observation, the distribution of intermitotic times, one can recover the
mitosis-dependent death rate [97] from the eigenvalue problem, following the methodological
principle introduced in [14, 44, 166].

This paper is organized as follows. In section 1, we present the direct problem (multi-
type McKendrick–VonFoerster). Inspired from the single layer case [19], we propose a formal
solution based on the characteristic curves, and use them to design a numerical scheme, as
performed in [28]. We check our numerical scheme using the mass conservation property. In
Section 2, using a Fredholm integral equation, we show the well-posedness of the IP in the
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single layer case, when considering a continuous non-synchronized initial condition. Because
of the mitosis-dependent death rate, the Fredholm alternative cannot be applied, and we use a
constructive approach to obtain the lattice division rate from the knowledge of both the total
cell number and a continuous (non-synchronized) initial condition. Then, we take advantage
of the unidirectional motion and decompose the Jth layer model into J submodels, each
corresponding to the single layer model with an additional extrinsic term in the boundary
condition. We again derive a Fredholm integral equation for each submodel and deduce the
well-posedness of the multi-type inverse problem. In section 3, we show the well-posedness of
the IP in the single layer case, when considering Dirac masses as initial conditions. After con-
structing a solution from the characteristic lines, we still obtain a Fredholm integral equation.
In each situation, we illustrate numerically our theoretical results. We conclude the paper by
a Conclusion/Discussion section. Complements on the numerical scheme construction and
the proofs can be found in the Appendix.

V.1 Model and discretized solutions

We recall the age and layer structured cell population model considered in [33]. Let J ∈ N∗.
The cell population is represented by a population density function ρ := (ρ(j)(t, a))j∈J1,JK ∈
L1(R+)J , where ρ(j) is the cell age density in layer j at time t such that ρ verifies, for all
j ∈ J1, JK, for all t ∈ (0,+∞),
∂tρ

(j)(t, a) + ∂aρ
(j)(t, a) = −bj(a)ρ(j)(t, a), a ∈ (0,∞),

ρ(j)(t, a = 0) = 2(1− p(j−1)
S )

∫ +∞

0
bj−1(a)ρ(j−1)(t, a)(t, a) da+ 2p(j)

S

∫ +∞

0
bj(a)ρ(j)(t, a) da,

ρ(j)(0, a) = ψj(a), a ∈ (0,+∞),
(V.1)

where bj are the division rate functions, and ψ = (ψj)j∈J1,JK is the initial density such that
for all j ∈ J1, JK, ψj ∈ Cc(R+). For all j ∈ J1, JK, the parameter p(j)

S is the probability that
a cell taken randomly among both daughter cells, remains on its mother layer j. For all
j ∈ J1, J − 1K, we take p(j)

S ∈ (0, 1). On the last layer, p(J)
S ∈ (0, 1]. A natural choice in

the multi-layer case is to consider p(J)
S = 1 as in [33]. The division rate on each layer has a

classical probabilistic interpretation [27, 94, 93, 97]: the probability that a cell born on the
j-th layer has not yet divided at age α is

exp
(
−
∫ α

0
bj(s)ds

)
.

It follows that if
∫+∞

0 bj(s)ds = +∞, the cell divides almost surely, and conversely, if∫+∞
0 bj(s)ds < +∞, a cell may never divide and become quiescent. This will happen in
particular if bj is a bounded, compactly supported function. We investigate the inverse
problem associated with the model (V.1):

Definition V.1.

(IP) Given the initial condition ψ, the probability p(J)
S and the functions

m(t) := (mj(t))j∈J1,JK with mj(t) :=
∫ +∞

0
ρ(j)(t, a)da, (V.2)
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defined for all t ∈ [0, T ), with T > 0, determine the functions bj and the probabilities p(j)
S ,

for all j ∈ J1, J − 1K, such that the direct problem (V.1) is satisfied on [0, T ).

The model is completed with a set of hypotheses on the division rate and initial conditions,
formulated below.

Hypothesis V.1. For all j ∈ J1, JK, the division rates bj are non-negative compactly sup-
ported functions: bj ∈ Cc

(
(Amin

j , Amax
j )

)
, where Amin

j , Amax
j ∈ R+ ∪ {0} ∪ {+∞}, such that

Amin
j < Amax

j .

For the single layer case, note that this hypothesis is more general than the one used
either in [93] where the division rate function is supposed to be non-lattice or, in the steady
state approach [97] where Amax

1 = +∞.

Motivated by the biological process studied in [33], we consider that the system starts with
all the layers empty, except the first one. We consider different types of initial conditions:
either Dirac measures corresponding to a fully or partially synchronized population, or a
continuous function corresponding to a non-synchronized population.
In case of a continuous initial condition, we assume that the following hypotheses are verified.

Hypothesis V.2. For all j ∈ J2, JK and for all a ∈ (0,+∞), we have ψj(a) = 0 and
ψ1 ∈ Cc

(
(aψmin, a

ψ
max)

)
, with aψmin, a

ψ
max ∈ R+ such that aψmin < aψmax.

If the initial condition is a Dirac measure or Dirac Comb, we assume that:

Hypothesis V.3. For all j ∈ J2, JK and for all a ∈ (0,+∞), we have ψj(a) = 0. In
addition, we suppose that there exist two sequences of N + 1 positive numbers, with N ∈ N,
a = (ai)i∈J0,NK ∈ RN+ ∪ {0} and Ψ = (Ψi)i∈J0,NK ∈ RN+ such that

aψmax := a0 > a1 > ... > aN =: aψmin.

Then, we define the initial condition on the first layer, for all a ≥ 0, by

ψ1(a) :=
N∑
i=0

Ψiδai(a). (V.3)

Finally, to show the well-posedness of the inverse problem (IP), we will need two additional
hypotheses on the bj functions.

Hypothesis V.4. For all j ∈ J1, JK, the division rates bj are analytic on their support sets.

Hypothesis V.5. The first division time on Layer 1 is larger than the age of the eldest cells
at initial time: Amin

1 ≥ aψmax.

Hypothesis V.1 is quite natural from the biological viewpoint, whereas Hypotheses V.4
and V.5 are purely technical, yet easily fulfilled.
We follow the same approach as in [94, 95] and first solve the direct problem (V.1).
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V.1.1 Formal solutions of the direct problem

Even if an explicit solution of the PDEs (V.1) cannot be obtained, one classical way to solve
the direct problem when dealing with continuous initial conditions, is to use the method of
characteristics [19, 27]. We integrate the PDEs (V.1) along the characteristics lines a = a0 +t
and t = t0 + t, where a0 and t0 are nonnegative constants. We get for all j ∈ J1, JK and for
all a ∈ (0,+∞),

ρ(j)(t, a) =

 ψj(a− t)e
−
∫ a
a−t bj(s)ds, a ≥ t

ρ(j)(t− a, 0)e−
∫ a

0 bj(s)ds, a ≤ t.
(V.4)

Hence, we obtain an expression for each ρ(j), for j ∈ J1, JK, that depends on the initial density
ψj , the division rate bj , and the boundary condition ρ(j).
To close system (V.4), we need to get an explicit expression for the boundary condition.
When J = 1, the boundary condition, classically called the birth rate, is solution of a renewal
equation [93]. In our context, we can retrieve a similar renewal equation verified by the
boundary condition:

ρ(j)(t, 0) = hj(t)+2p(j)
S

(∫ t

0
ρ(j)(t− a, 0)bj(a)e−

∫ a
0 bj(s)dsda+

∫ +∞

t
ψj(a− t, 0)bj(a)e−

∫ a
a−t bj(s)dsda

)
,

with hj(t) := 2(1− p(j−1)
S )

∫+∞
0 bj−1(a)ρ(j−1)(t, a)da.

This equation is the deterministic counterpart of the renewal equation obtained from a
stochastic equivalent model introduced in [33].

Figure V.1 illustrates the characteristic lines obtained from expression (V.4) with J = 3.
Note that since all layers except the first are empty at initial time, a delay is needed for cells
to enter the second and third layers.

V.1.2 Numerical scheme to simulate the direct problem

In this subsection, we propose a numerical scheme for the direct problem (V.1).
The main numerical difficulty associated with the hyperbolic PDEs (V.1) is the assessment
of the boundary condition, which has been dealt with by several numerical methods, based
either on the method of characteristics [32, 31, 28], escalator boxcar train [29] or finite volume
method [33].
Given that our problem possibly involves a non-continuous initial condition (ψ1), and lat-
tice division rates, the method of characteristics is the most suitable one. In particular, the
characteristics-based scheme ensures mass conservation during the transport phase by pre-
venting numerical diffusion when a < Ajmin.
In addition, we will see later that this approach helps designing a numerical scheme for solv-
ing the inverse problem (IP).

To obtain a discretized solution of the PDEs (V.1), we write the conservative law for a
vector function ρ̃ = (ρ̃(j))j∈J1,JK, defined as: for all j ∈ J1, JK, t ∈ (0,+∞) and a ∈ (0,+∞),

ρ̃(j)(t, a) := ρ(j)(t, a) exp
(
−
∫ a

0
bj(s)ds

)
.
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Amin
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2(1− p
(2)
S )

Fig. V.1 Illustration of the PDEs (V.1) and the method of characteristics.
Starting from Layer 1, since cells are aging, the density ρ(1) is transported along the
characteristic lines a = ã + t, for all ã ∈ (aψmin, a

ψ
max). Then, when a characteristic

line enters the (lilac colored) division domain [Amin
1 , Amax

1 ], cells divide and the age
is reset to zero. A proportion 2p(1)

S of the new born cells remains on the mother
layer (Layer 1) whereas the other proportion, 2(1−p(1)

S ), is sent to the second layer.
The same mechanism is repeated from Layer 2 to Layer 3 and so on. Note that the
motion is unidirectional: cells cannot go to layers of lower index than their mother.

From the PDEs (V.1), we obtain directly that, for all t ∈ (0,+∞) and a ∈ (0,+∞),

∂tρ̃
(j)(t, a) + ∂aρ̃

(j)(t, a) = 0. (V.5)

We now have all the elements to design a numerical scheme.

First, we introduce the notations for the discretized solutions associated with the PDEs
(V.1) over the time interval [0, T ].
We discretize both the age and time intervals with the same size step: ∆ = ∆t = ∆a, in
order to be able to follow the characteristics. Let M be an integer such that M ≥ ba

ψ
max+T

∆ c.
We introduce the age grid points an = n∆, n = 0, ...,M and the time grid points tk = k∆,
k = 0, ..., b T∆c. We refer to the grid point an by the subscript n and to the time grid point tk
by the subscript k. Let U jk,n be a numerical approximation to ρ(j)(tk, an).
We have the following numerical algorithm whose local truncation error is O (∆), (see details
in Appendix A.2.1):

U jk+1,n = U jk,n−1 exp(−
∫ an

an−1
bj(s)ds), (V.6)
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U jk+1,0 = 2(1−p(j−1)
S )

bA
j−1
max
∆ c−1∑

n=b
A
j−1
min
∆ c

(
1− e−

∫ n∆
(n−1)∆ bj−1(s)ds

)
U j−1
k,n +2p(j)

S

bA
j
max
∆ c−1∑

n=b
A
j
min
∆ c

(
1− e−

∫ n∆
(n−1)∆ bj(s)ds

)
U jk,n.

(V.7)
The reader can refer to [28] for a detailed proof of convergence in the single layer case. In the
several layer case, the term corresponding to the intrinsic contribution could be dealt with in
a similar way as in the single layer case, yet one should also control the order of the extrinsic
term, which is beyond of the scope of this paper.

Remark V.1 (Mass conservation property). When J = 1 and p(1)
S = 1

2 , we can observe that
the mass conservation property is verified in the sense that

M∑
n=0

U1
k+1,n =

M∑
n=0

U1
k,n.

V.2 Analysis of the inverse problem (IP) for continuous initial con-
ditions

In this section, we analyse the inverse problem (IP) enunciated in Definition V.1 starting
with the simplest case of a single layer and considering a compactly supported function as
initial condition. We then extend our results to the general case of several layers.

V.2.1 Single layer case
In all this subsection, we fix J = 1 and consequently, to simplify notations, we drop the index
layer so that for instance ρ(1) becomes ρ. We thus consider the following PDE, identical to
the PDEs (V.1) with J = 1:

∂tρ(t, a) + ∂aρ(t, a) = −b(a)ρ(t, a), a ∈ (0,∞),

ρ(t, a = 0) = 2pS
∫ +∞

0
b(a)ρ(t, a) da,

ρ(0, a) = ψ(a), a ∈ (0,+∞),

(V.8)

Note that when pS = 1, PDE (V.8) is the renewal equation. When pS < 1, PDE (V.8) is
similar to a McKendrick–VonFoerster equation in which the birth rate would be 2ps times the
death rate. We recall that according to the definition of (IP), pS = p

(1)
S (= p

(J)
S ) is assumed

to be known while the division rate b is unknown.

a) Well-posedness of the inverse problem (IP)

We first show that the identification problem (IP) is equivalent to an inhomogeneous Fredholm
integral equation.

Theorem V.1. Under Hypotheses V.1 and V.2, and supposing that pS 6= 1
2 , we define

f(t) := − 1
2pS−1m1(t) + 2pS

2pS−1m1(0). Then, we have for all t ∈ [0, Amin]

f(t) =
∫ aψmax

aψmin

ψ(a)e−
∫ a+t
a

b(s)dsda. (V.9)
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Before starting the proof of Theorem V.1, we will need the following lemma:

Lemma V.1. Under the same hypotheses as Theorem V.1, we have for all t ∈ [0, Amin],

m′1(t) = 2pS − 1
2pS

ρ(t, 0) (V.10)

Proof. Since both ψ and b are compactly supported, the total number of cells m1(t) =∫+∞
0 ρ(t, a)da can be decomposed as the sum of the initial cells that have not yet divided and
the cells born since time t = Amin − aψmax:

m1(t) =
∫ aψmax+t

aψmin+t
ρ(t, a)da︸ ︷︷ ︸

initial cells

+
∫ min(Amin−aψmin+t,0)

0
ρ(t, a)da︸ ︷︷ ︸

cells born since time t=Amin−aψmax

. (V.11)

Using two changes of variables, the translation s = a − aψmin − t and the homothetic trans-
formation s = a

Amin−aψmin+t
, we can prove formula (V.10). Note that in the general case,

corresponding here to Amin = aψmin = 0 and Amax = aψmax = +∞, such changes of vari-
ables are not needed to obtain formula (V.10). The detailed proof is exposed in Appendix
A.2.2.

We can now proceed to the proof of Theorem V.1.

Proof of Theorem V.1. To simplify the proof, we do not use expression (V.11) and instead,
we write the total number of cells m1 (eq. (V.2)) as the sum of the number of the remaining
cells that have not divided yet and the cells born since time t > 0, according to the formal
solution of ρ (V.4):

m1(t) =
∫ t

0
ρ(t− a, 0)e−

∫ a
0 b(s)dsda︸ ︷︷ ︸

new born cells

+
∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda︸ ︷︷ ︸

remaining mother cells

.

We apply Lemma V.1, for all t ≥ 0 and we obtain

m1(t) = 2pS
2pS − 1

∫ t

0
m′1(t− a)e−

∫ a
0 b(s)dsda+

∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda.

We suppose that t ≤ Amin. Hence, the only cells that can divide are the cells present at
initial time (mother cells). The newborn daughter cells have not yet had the time to divide
(there are no grand-daughter cells). For all t ∈ [0, Amin],

m1(t) = 2pS
2pS − 1

∫ t

0
m′1(t− a)da+

∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda

= 2pS
2pS − 1(m1(t)−m1(0)) +

∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda.

Since∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda =

∫ aψmax

0
ψ(a)e−

∫ a+t
a

b(s)dsda =
∫ aψmax

aψmin

ψ(a)e−
∫ a+t
a

b(s)dsda,

the definition of f leads to the inhomogeneous Freholm integral equation (V.9).



V.2 Analysis of the inverse problem (IP) for continuous initial conditions135

Remark V.2. Note that Theorem V.1 is defined on the time interval [0, Amin]. During this
interval, only the mother cells coming from the initial condition are dividing. Hence, we can
extend this result to the time interval [0, 2Amin − aψmax] if Amin ≥ aψmax.

Remark V.3 (Self-renewal case). Note that, if pS = 1
2 , the identification problem is not

well-posed so that alternative observation data should be used. Indeed, the total number of
cells is constant along time whereas the solution of the inverse problem is based on changes
in this number.

Usually, the inhomogeneous Fredholm integral equation, which is a particular case of the
Volterra integral equation, is studied in the case where the kernel is known. Here, we rather
consider the inverse problem of reconstructing the kernel from function f and initial condition
ψ.

Theorem V.2. Under Hypotheses V.1, V.2, V.4 and V.5, the problem (IP) is well-posed.

Proof. Applying Hypothesis V.5 to the Fredholm integral equation (V.9), we first deduce
that, for all t ∈ [0, Amin],

f(t) =
∫
R
ψ(a) exp(−

∫ a+t

Amin
b(s)ds)da.

Then, using the change of variables u = a+ t, we obtain that

f(t) =
∫
R
ψ(a− t) exp(−

∫ a

Amin
b(s)ds)da. (V.12)

We can recognize a convolution product. However, since relation (V.12) is verified only for
t ∈ [0, Amin], we cannot use the Laplace transform directly to separate function ψ from
the age-dependent function a → exp(−

∫ a
Amin b(s)ds). We rather introduce the truncated

functions f̃ and b̃ such that:

f̃(t) = f(t)1[0,Amin)(t) + f(Amin)1[Amin,+∞)(t) and b̃(a) = b(a)1[0,Amin+aψmax](a). (V.13)

In other words, function f̃ coincides with function f on the interval [0, Amin], and function b̃
coincides with function b on the interval [0, Amin + aψmax]. Hence, we deduce from relations
(V.12) and (V.13) that for all t ≥ 0,

f̃(t) =
∫
R
ψ(a− t) exp

(
−
∫ a

Amin
b̃(s)ds

)
da. (V.14)

Since f , ψ and g(a) := exp(−
∫ a
Amin b̃(s)ds) are constant beyond a given time/age, their

associated Laplace transforms exist for all p > 0, so that we can apply a Laplace transform
to relation (V.14), and deduce that, for all p > 0,

F [f̃ ](p) = F [ψ̃](p)F [g](p), (V.15)

where F [f̃ ] is the Laplace transform associated with function f . From relation (V.15), we
deduce the uniqueness of the Laplace transform of function g. From the injectivity property of
the Laplace transform, we deduce the uniqueness of function g. From the bijectivity property
of function g, we then deduce the uniqueness of function b̃. Finally, from the uniqueness of
function b on the interval [0, Amin + aψmax], we deduce from Hypothesis V.4 the uniqueness of
function b on the whole interval R+.
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Remark V.4. The results of Theorem V.2 can be extended to non-analytic b functions by
piecewise reconstruction of b on its whole support (Amin, Amax). From the proof of Theorem
V.2, we have the uniqueness of b on the interval [0, Amin + aψmax]. Then, from the knowledge
of b on the interval [0, Amin + aψmax] and remembering that the first newborn cells, born at
time 2Amin−aψmax (see Remark V.2) start to divide at time t = 3Amin−aψmax, one can derive
a Fredholm integral equation for t ∈ [0, 3Amin − aψmax], following the proof of Theorem V.1,
hence deduce the uniqueness of b on the interval [0, 2Amin + aψmax]. Repeating this operation
as many times as needed, we finally obtain the uniqueness of function b on its whole support.

While Theorem V.2 ensures the uniqueness of function b, it does not provide us with a
tractable analytic formula to reconstruct it. This issue is addressed in the next paragraph.

b) Numerical procedure for non-synchronized populations

We finish the study of the inverse problem (IP) for the single layer case by proposing a nu-
merical procedure to retrieve the division rate b from the total number of cells.
We assume that the initial condition ψ can be discretized using a time sequence tk = k∆ and
we aim to compute the b(k∆) values.

The procedure is based on the fact that we use the same size step ∆ for both the age
and time grids. Let the initial sequence Ψ = (Ψi)i∈Jimin,imaxK where imin = ba

ψ
min
∆ c and

imax = ba
ψ
max
∆ c.

Between t = 0 and t = Amin − aψmax, cells are aging, hence PDE (V.8) is a pure transport
equation. Then, at time t = Amin−aψmax, the first division happens for cells that have reached
age Amin.

We fix the initial values of vector b := (bk)k∈J0,NK to zero. Each observation of the total
number of cells at time tk will be used to refresh one by one the value of vector b from left
to right.

Using the numerical scheme (expressions (V.6) and (V.7)), we define the mass difference
at time tk by:

µk := m(tk)−∆
imax+k∑
n=0

Uk,n. (V.16)

At time tk, all the bn for n ∈ J0, imax + k − 1K have been refreshed at time tk−1, while the
remaining values for indexes n ∈ Jimax + k,NK are still zero. At this time tk, the change in
the mass difference can only come from the eldest cells indexed by imax +k. Hence, if µk = 0,
the eldest cells have not divided yet between tk−1 and tk. Otherwise, if µk 6= 0, a division
has occurred. We recall the reader that pS is the probability that at least one daughter cell
remains on Layer 1. If pS < 1

2 , this division results in a negative mass difference, otherwise,
if pS > 1

2 , it results in a positive mass difference.
To compute the bimax+k, we use the mass difference definition (V.16) and the numerical
scheme to write the mass balance conservation law:

m(tk) = ∆
imax+k−1∑

n=0
Uk,n︸ ︷︷ ︸

remaining cells

+ ∆Uk−1,imax+k−1e
−∆bimax+k + 2pS∆(1− e−∆bimax+k)Uk−1,imax+k−1︸ ︷︷ ︸

dividing eldest cells

.

(V.17)



V.2 Analysis of the inverse problem (IP) for continuous initial conditions137

Fig. V.2 Illustration of Algorithm 2. Left panel: initial situation where all
b values are set to zero (red dots). Each vertical colored segment corresponds to
a Dirac mass 2δai , i = 1, 2, 3, of the initial Dirac comb condition (ψ). The black
curve is the target b function. Middle panel: first occurrence of eldest cell division
(initial ages a3). The purple segment reaches the b function with aging at time tk,
hence the mass difference µk (formula (V.16)) is non-zero. Applying formula (V.18),
we reconstruct the true b[i3 + k], where i3 is the index of the discretized age a3.
Right-panel: continuation of the b updating from the same eldest cell (initial age
a3) at time tk+1, tk+2, . . .

Since at time tk, bimax+k is zero before refreshing, we have from the numerical scheme
(V.6) that Uk−1,imax+k−1 = Uk,imax+k. Let ũ := Uk−1,imax+k−1. From the conservation law
(V.17) and the µk definition (V.16), we deduce

µk = −∆Uk,imax+k + ∆(2pS − 1)(1− e−∆bimax+k)ũ⇒ bimax+k = − log(1− xk)
∆ , (V.18)

with
xk := µk

∆(2pS − 1)ũ .

These steps can be summarized by the following pseudo-code:
Initialization: give pS , the total number of cells m and the time grid t = (tk)k∈J0,NK ;
Set bk = 0, for all k ∈ J0, NK;
for k from 0 to N do

Compute Uk,n with the numerical scheme (V.6) and (V.7);
Compute the loss mass µk as defined in equation (V.16);
if |µk| > 0: then

Compute b[imax + k] using formula (V.18);
Refresh the boundary condition and the eldest cells of age imax + k :
• Uk,0 ← Uk,0 + 2pSUk,i(1− exp(−∆b[i]))

• Uk,i ← Uk,i exp(−∆b[i])

end
end
Return vector b ;
Algorithm 2: Pseudo-code for the reconstruction of the b function from m and pS .
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We illustrate this method in Figure V.3 and in additional figures in Appendix A.2.3. Note
that some instabilities appear in the case of the piecewise constant function (orange line)
which may be due to its non-smooth character. We also performed a study on the sampling
rate ∆ (which appears to be in our case also the age size step) to get practical insight into
the numerical convergence (stability) of the reconstruction of the estimated function with
respect to ∆ (see Figure A.3b in Appendix A.2.3).

V.2.2 Multi-layer case
We now consider the inverse problem (IP) with two layers (J = 2). We recall the reader that,
in this case, we aim to determine all the division rates bj , j ∈ J1, JK and the probability p(j)

S ,
j ∈ J1, J − 1K knowing the probability p(J)

S on Layer J , the initial condition ψ and the mean
cell number of each layer mj , j ∈ J1, JK.

Theorem V.3. Under the same hypotheses as Theorem V.2, the inverse problem (IP) is
well-posed for J = 2.

To prove Theorem V.3, we take advantages of the unidirectional motion of the model
(V.1) and split the proof in two parts: the uniqueness of parameter p(1)

S and function b1
(contribution of Layer 1), and the uniqueness of function b2 (contribution of Layer 2).
We start by the analysis of the first layer and get the following lemma:

Lemma V.2. Under the same hypotheses as Theorem V.3, function b1 and parameter p(1)
S

verifying the inverse problem (IP) depend only on the total number of cells on Layer 1, m1,
and Layer 2, m2, where m1 and m2 are defined by equation (V.2).

Proof. The first cells coming from the initial condition ψ1 enter Layer 2 at time S1 :=
Amin

1 −aψmax and start to divide at time S2 := Amin
2 +S1. Layer 2 is empty between t = 0 and

t = S1. From t = S1 to t = S2, the cells start to enter Layer 2 and are only aging. Hence,
the cell density function on Layer 2, ρ(2), solution of the PDEs (V.1), verifies a transport
equation with a source term at the boundary condition: for all t ∈ [0, S2],

∂tρ
(2)(t, a) + ∂aρ

(2)(t, a) = 0, a ∈ (0,∞),

ρ(2)(t, 0) = 2p(1)
S

∫ +∞

0
b1(a)ρ(1)(t, a) da.

We first show that b1 depends only on m1 and m2. We consider the sum of the cells on
the two layers: ρ = ρ(1) + ρ(2) and deduce from the PDEs (V.1) that

∂tρ(t, a) + ∂aρ(t, a) = −b1ρ(1)(t, a). (V.19)

Since the b1 function is non-zero on the interval (Amin
1 , Amax

1 ), and the density function
ρ(2)(t, ·) is non-zero on the interval [0, t−S1] for all t ∈ (S1, S2), we deduce that (Amin

1 , Amax
2 )∩

[0, t− S1] = ∅ when t < S1 +Amin
1 . Hence, we can write using expression (V.19) that, for all

t ∈ (S1,min(S1 + Amin
1 , S2)), ∂tρ(t, a) + ∂aρ(t, a) = −b1ρ(t, a) and deduce that ρ is solution

of the PDE:
∂tρ(t, a) + ∂aρ(t, a) = −b1(a)ρ(t, a), t ∈ (0,min(S1 +Amin

1 , S2)), a ∈ (0,∞),

ρ(t, 0) = 2
∫ +∞

0
b1(a)ρ(t, a) da,

ρ(0, a) = ψ(a), a ∈ (0,+∞),
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Fig. V.3 Illustration of the numerical procedure. Figure V.3a: we simulate
m1 using the numerical scheme for different b functions which are non-zero for
all a ∈ (2, 3.5): a bump function (green line) b(a) = 0.05 exp( 0.05

(a−2.75)2−0.5625); a
polynomial function (pink line) b(a) = −0.004(a−2)(a−3.5) and a uniform function
(orange line) b(a) = 2

3 . Figure V.3b: using Algorithm 2, we compute the b functions
from the m1 values. The estimated b functions are the dashed lines while the
original functions are the black solid lines. Figure V.3c: we represent the simulated
density distribution ρ at different time points (t = 0, 0.5, 2, 3, 6) for the bump b
function (black dashed line) used in Figure V.3a. In all panels, ∆ = 5 ∗ 10e − 3,
ψ(a) = 1a∈[0.5,2](a) (piecewise function) and pS = 1.
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Since this PDE is the same as PDE (V.8), we apply Theorem V.2 and deduce the uniqueness
of b1.

We turn now to the uniqueness of parameter p(1)
S . Taking the derivative of both m1 and

m2, for all t ∈ [0, S2], we obtain that:

m′1(t) = (2p(1)
S − 1)

∫ +∞

0
b1(a)ρ1(t, a) da , m′2(t) = 2(1− p(1)

S )
∫ +∞

0
b1(a)ρ1(t, a) da

As there exists at least one t ∈ [0, S2] such that
∫ +∞

0
b1(a)ρ(1)(t, a) da 6= 0, we deduce, first,

m′1(t)2(1− p(1)
S ) = m′2(t)(2p(1)

S − 1),

and then the uniqueness of p(1)
S . This ends the proof.

Inverse problem of an age structured population system with source term in
the boundary condition
To show the uniqueness of function b2, we first study the following inverse problem.
Let η ∈ L1(R+), solution of the PDE

∂tη(t, a) + ∂aη(t, a) = −b(a)η(t, a), t ∈ (0,∞), a ∈ (0,∞),

η(t, 0) = g(t) + 2
∫ +∞

0
b(a)η(t, a) da,

η(0, a) = ψ(a),

(V.20)

with g a differentiable function on R+ supposed to be known and ψ ∈ Cc((aψmin, a
ψ
max)). We

also suppose that b ∈ Cc((Amin, Amax)) (Hypothesis V.1).
We investigate the inverse problem associated with the model (V.20):

ĨP Given the initial condition ψ, the function m̃(t) :=
∫+∞

0 η(t, a)da and the function g,
both defined for all t ∈ [0, T ), with T > 0, determine function b such that the direct
problem (V.20) is satisfied on [0, T ).

In the same way as in sub-section V.2.1, we can show that the inverse problem ĨP can
be reformulated as a Fredholm integral equation

Lemma V.3. Under Hypothesis V.1 and supposing that ψ ∈ Cc((aψmin, a
ψ
max)), we define

f2(t) := −m̃(t) + 2m̃(0) +
∫ t

0 g(a)da. Then, we have for all t ∈ [0, Amin]

f2(t) =
∫ aψmax

aψmin

ψ(a)e−
∫ a+t
a

b(s)dsda. (V.21)

Proof. In the same way as for the proof of Theorem V.3, we can write that

m̃(t) =
∫ t

0
η(t− a, 0)e−

∫ a
0 b(s)dsda︸ ︷︷ ︸

new born cells

+
∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda︸ ︷︷ ︸

remaining mother cells

. (V.22)
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To obtain a relation between the boundary condition η(t, 0) on the one hand and, m̃(t) and
g(t) on the other hand, for all t ≥ 0, we follow the same approach as in Lemma V.10 and get

m̃(t) =
∫ aψmax+t

aψmin+t
ρ(t, a)da︸ ︷︷ ︸

initial cells

+
∫ t

0
ρ(t, a)da︸ ︷︷ ︸

cells born

.

Note that here the cells born are both coming from the source term g and the division rate
b. Using the changes of variables s = a− aψmin + t and s = a

t , we obtain that :

m̃′(t) = −
∫ +∞

0
b(a)ρ(t, a)da+ ρ(t, 0) = −ρ(t, 0)− g(t)

2 + ρ(t, 0)⇒ ρ(t, 0) = 2m̃′(t)− g(t).

If g is lattice, before using the changes of variables, the interval (0, t) needs to be split in as
many sub-intervals as necessary, so that the function is non-lattice.
Combining the expression of m̃′ with expression (V.22) and using that b ∈ Cc((Amin, Amax)),
we deduce that, for all t ∈ [0, Amin],

m̃(t) = 2 [m̃(t)]t0 −
∫ t

0
g(a)da+

∫ t+aψmax

t
ψ(a− t)e−

∫ a
a−t b(s)dsda. (V.23)

We finally deduce expression (V.21) from expression (V.23).

Hence, since ψ is a compactly supported function, we deduce the well-posedness of the
inverse problem ĨP from the application of Theorem V.2 with the suitable hypotheses.

We can now proceed to the proof of Theorem V.3.

Proof of Theorem V.3. The uniqueness of function b1 and parameter p(1)
S is a consequence of

Lemma V.2. We now prove the uniqueness of function b2. Between t = S2 and t = S3 :=
Amin

2 + S2, in the same way as in the single layer case, only cells born from Layer 1 mother
cells can divide.

Let g(t) := 2(1 − p(1)
S )

∫ +∞

0
b1(a)ρ1(t, a) = 2p(1)

S − 1
2p(1)
S

m′1(t), according to Lemma V.1. Since

p
(1)
S is known by definition of our inverse problem (IP), we deduce that g is entirely known.

Then, for all t ∈ (S2, S3), ρ(2) verifies
∂tρ

(2)(t, a) + ∂aρ
(2)(t, a) = −b2ρ(2)(t, a), a ∈ (0,∞),

ρ(2)(t, 0) = g(t) + 2
∫ +∞

0
b2(a)ρ(2)(t, a) da,

ρ(2)(S2, a) = 2(1− p(1)
S )

∫ +∞

0
b1(s)ρ1(S2 − a, s)ds,

Since this model is equivalent to PDE (V.20) (by performing a time translation t − S2), we
can apply Lemma V.3 and deduce that, for all t ∈ (S2, S3),

f2(t) =
∫ aψmax

aψmin

ρ(2)(S2, a)e−
∫ a+t
a

b2(s)dsda,

where f2(t) = −m2(t) + 2m2(0) +
∫ t

0 g(a)da = −m2(t) + 2m2(0) + 2p(1)
S −1

2p(1)
S

(m1(t) − m1(0).

Here, the support of the initial condition ρ(2)(S2, a) is (0, Amin
2 ), so that Hypothesis V.5 is

verified. Applying Theorem V.2, we deduce that b2 is unique. This ends the proof.
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Using the unidirectional motion again, we can extend Theorem V.3 to the case of more
than two layers, N ≥ 2.

Remark V.5 (Self-renewal case). If we consider the case when the first layer is self-renewing
(m1 is constant), then since m1(t) = m̄1 implies that p(1)

S = 1
2 , we can nevertheless recover

function b2 (and p(1)
S ) using Theorem V.3.

V.3 Analysis of the inverse problem (IP) for Dirac measure initial
conditions

We turn now to the case of Dirac mass as initial condition. We suppose that the results
proposed in [165, 34] for the renewal equation (pS = 1

2 and b non-lattice and bounded after a
given age a∗) can be extended to our case (pS ∈ (0, 1] and lattice function b). We also admit
that the characteristic formula (V.4) is verified for the measure solutions µt ∈ M(R+), the
set of signed Borel measures on R+: for all t ≥ 0, for all a ≥ 0,

µt(a) = 1[0,t](a)µt−a(0) exp
(
−
∫ a

0
b(u)du

)
+ 1[t,+∞)(a)ψ(a− t) exp

(
−
∫ a

a−t
b(u)du

)
,

µt(0) = 2pS
∫
R+
b(a)dµt(a), (V.24)

in the sense that, for all h ∈ Cc(R+),
∫
R+
h(a)dµt(a) =

∫ t

0
µt−a(0) exp

(
−
∫ a

0
b(u)du

)
h(a)da+

∫ +∞

t
exp

(
−
∫ a

a−t
b(u)du

)
h(a)dψ(a−t).

(V.25)
In the same way as for the continuous initial condition case, we derive the following equation,
which is the formal analog of the Fredholm integral equation in Theorem V.1.

Theorem V.4. Under Hypothesis V.1, and supposing that ψ ∈M([aψmin, a
ψ
max]) and pS 6= 1

2 ,
we define f(t) := − 1

2pS−1m1(t) + 2pS
2pS−1m1(0). Then, we have for all t ∈ [0, Amin]

f(t) =
∫ aψmax

aψmin

exp
(
−
∫ a+t

a
b(s)ds

)
dψ(a).

Proof. Taking h(a) = b(a) in relation (V.25) , we deduce from formula (V.24) that for all
t ≥ 0,

µt(0) = 2pS
[∫ t

0
b(a)µt−a(0) exp

(
−
∫ a

0
b(u)du

)
da+

∫ +∞

t
b(a) exp

(
−
∫ a

a−t
b(u)du

)
dψ(a− t)

]
.

Then, since t ∈ [0, Amin], we deduce from Hypothesis V.1 that

µt(0) = 2pS
∫ +∞

t
b(a) exp

(
−
∫ a

a−t
b(u)du

)
dψ(a−t) = 2pS

∫ +∞

0
b(s+t) exp

(
−
∫ s+t

s
b(u)du

)
dψ(s),

(V.26)
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with the change of variables s = a− t. Then, using relation (V.26) in (V.25), we obtain that
for all h ∈ Cc(R+),

∫
R+
h(a)dµt(a) = 2pS

∫ t

0

[∫ +∞

0
b(s+ t− a) exp

(
−
∫ s+t−a

s
b(u)du

)
dψ(s)

]
exp

(
−
∫ a

0
b(u)du

)
h(a)da

+
∫ +∞

t
exp

(
−
∫ a

a−t
b(u)du

)
h(a)dψ(a− t). (V.27)

Taking h(a) = 1[0,aψmax+Amin](a), we deduce from relation (V.27) that:

m(t) = 2pS
∫ t

0

[∫ +∞

0
b(s+ t− a) exp

(
−
∫ s+t−a

s
b(u)du

)
dψ(s)

]
exp

(
−
∫ a

0
b(u)du

)
da

+
∫ +∞

t
exp

(
−
∫ a

a−t
b(u)du

)
dψ(a− t). (V.28)

Since t ∈ [0, Amin], we have

∫ t

0

[∫ +∞

0
b(s+ t− a) exp

(
−
∫ s+t−a

s
b(u)du

)
dψ(s)

]
exp

(
−
∫ a

0
b(u)du

)
da

=
∫ t

0

[∫ +∞

0
b(s+ t− a) exp

(
−
∫ s+t−a

s
b(u)du

)
dψ(s)

]
da.

Then, applying first Fubini theorem then an integration by part, we deduce:∫ t

0

[∫ +∞

0
b(s+ t− a) exp

(
−
∫ s+t−a

s
b(u)du

)
dψ(s)

]
da =

∫ +∞

0

(
1− exp

(
−
∫ s+t

s
b(u)du

))
dψ(s).

(V.29)
Using relation (V.29) in (V.28), we deduce that

m(t) = 2pS
∫
R+
dψ(s)− (2pS − 1)

∫
R+

exp
(
−
∫ s+t

s
b(u)du

)
dψ(s)

and conclude.

Synchronized population
We consider a synchronized population ψ(a) = ψ0δa0(a) (N = 1 in the definition of ψ (V.3)).

Corollary V.1 (Synchronized population). Under Hypotheses V.1 and V.3, we have, for all
t ∈ [0, Amin],

b(a0 + t) = −f
′(t)
f(t) . (V.30)

Proof. Applying Theorem V.4 with ψ(a) = ψ0δa0(a), we obtain for all t ∈ [0, Amin],

ψ0e
−
∫ a0+t
a0

b(s)ds = f(t).

Then, taking the logarithm function and taking the derivative with respect to time, we obtain
formula (V.30).
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Fig. V.4 Illustration of Corollary V.1. Figure V.4a: in the same way as in Figure
V.3, we simulate m1 using the numerical scheme for the same b functions as in
Figure V.3. Figure V.4b: applying formula (V.30), we compute the b functions from
the m1 values. The estimated b functions are the dashed lines while the original
functions are the black solid lines. Figure V.4c: we represent the simulated density
distribution ρ at different time points (t = 0, 0.5, 2, 3, 6) for the bump function (black
dashed line) used in the Figure V.4a. In all panels, ∆ = 5 ∗ 10e− 3, ψ(a) = δ0.5(0)
and pS = 1.

Corollary (V.1) is illustrated in Figure V.4 for different b functions. Between t = 0 and
t = 4, the reconstructed b values in the three presented cases are identical to the expected
ones. However, we can note that after t = 4, the reconstructed b values are no more consistent
with the expected ones, which can be explained by the fact that formula (V.30) is verified
only for t ∈ [0, Amin].

If Amin + a0 ≥ Amax and pS is known, we deduce the uniqueness of the b function from
Corollary (V.1). In addition, we have an explicit formula to retrieve b from the observation
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m1 and the parameter pS , as illustrated in Figure V.5. On the contrary, if Amin +a0 < Amax,
the b function can only be partially reconstructed on [0, Amin +a0). In that case, the unique-
ness is a consequence of the additional Hypothesis V.4.

Note that if Hypothesis V.5 is not verified, i.e. a0 > Amin, the b function can only be
partially reconstructed as illustrated in Figure V.5.
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(a) Complementary illustrations of Corollary V.1 for different initial condi-
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(b) Complementary illustrations of Corollary V.1 for different pS values

Fig. V.5 Complementary illustrations of Corollary V.1. We proceed in the same
way as Figure V.4 using the bump function and for either different initial conditions
(Figure V.5a): ψ(a) = δ0.5(a) (blue line); ψ(a) = δ2.5(a) (green line) and ψ(a) =
δ4(a) (red line), with pS = 1, or different pS values (Figure V.5b): pS = 0.35 (blue
line), pS = 0.75 (green line) or pS = 1 (red line), with ψ(a) = δ1.5(a). In each
subfigure, the left panel represents the mean cell number m1 with respect to time,
while the right panel represents the estimated b functions.

Discrete non-synchronized population

We now consider a Dirac comb as initial condition: ψ(a) =
N∑
i=0

Ψiδai(a) with N ≥ 2.

Corollary V.2 (Discrete non-synchronized population). Under Hypotheses V.1, V.3, V.4
and V.5, the problem (IP) is well-posed.

Proof. To prove the uniqueness of the b function considering that the f function is known
for all t, we proceed by induction and first prove that, for all k ≥ 0,

f (k)(t) = φk(t)Q(t) +R(k)(t) (V.31)
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with the series of functions φk defined as

φk+1(t) = φ′k(t)− b(a0 + t)φk(t), φ0(t) = 1, (V.32)

where Q(t) := Ψ0 exp(−
∫ a0+t
Amin b(s)ds) and R(t) :=

∑N
i=1 Ψi exp(−

∫ ai+t
Amin b(s)ds).

For k = 0, we apply Theorem V.4 and obtain that, for all t ∈ [0, Amin],

f(t) =
N∑
i=0

Ψi exp(−
∫ ai+t

ai

b(s)ds) =
N∑
i=0

Ψi exp(−
∫ ai+t

Amin
b(s)ds) = Q(t) +R(t). (V.33)

Then, assuming that (V.31) is true up to rank k, we compute the time derivative of (V.31),
so that for all t ∈ [0, Amin]

f (k+1)(t) = φ′k(t)Q(t) + φk(t)Q′(t) +R(k+1)(t) = φk+1(t)Q(t) +R(k+1)(t),

since Q′(t) = −b(a0 + t)Q(t) and φk satisfies (V.32). This ends the induction.

We can now turn to the well-posedness of the inverse problem (IP).
From Hypothesis V.5, we deduce that Amin > ai for all i ∈ J1, NK. Let us consider the
positive time τ := Amin − a1. Then, as b ∈ Cc

(
(Amin, Amax)

)
(Hypothesis V.1), we obtain

that, for all k > 0,
R(k)(τ) = 0. (V.34)

Then, from expression (V.33), we get

f(τ) = ψ0 exp(−
∫ a0+τ

Amin
b(s)ds) +

N∑
i=1

Ψi

hence Q(τ) = f(τ) −
∑N
i=1 Ψi. Combining this with (V.34) and (V.33), we deduce that, for

all k ≥ 0,

φk(τ) = f (k)(τ)
f(τ)−

∑N
i=1 Ψi

.

We thus deduce that, for all k ≥ 0, φk(τ) depends only on the f function and the initial
condition ψ. From the recurrence relation (V.32), we have that φk depends on the k − 1
first derivatives of b. Hence, we deal with an invertible triangular system since the diagonal
coefficients are equal to one, and we deduce the uniqueness of b(k)(a0 + τ) for each k ≥ 0. We
then deduce the uniqueness of b on its whole support, from Hypothesis V.4.

Using Corollary V.2, we can extend the results of Theorem V.3 to the case of Dirac
measures initial conditions.

V.4 Conclusion
In this paper, we have analyzed an inverse problem associated with a multi-type version of
the McKendrick–VonFoerster model, and consisting of retrieving the division rate functions
bj , and the probability of motion p

(j)
S , for j ∈ J1, J − 1K, from the knowledge on the total

cell numbers on each layer. We chose to deal with compactly supported division rates, which
account for both a recovery time after birth (Amin) and a quiescent state beyond a given age
(Amax), and we have considered both synchronized or non-synchronized initial populations on
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the first layer, and supposed that all other layers are empty at initial time. If no division has
occurred at the initial time1 (Amin−aψmax ≥ 0), the entire division rate can be reconstructed.
This condition is encountered in the literature, see e.g. [98].
For continuous initial conditions, we have shown the well-posedness of the inverse problem,
first in the single layer case (see Theorem V.2), and then in the several layer case (see Theo-
rem V.3 2), after introducing a sequence of nested submodels with an additional source term
due to migration in the boundary condition. Then, we show the same result in the single layer
case for a discrete initial condition (Corollary V.1); we assume that the PDE (V.8) admits a
measure solution, and construct this solution from the characteristic lines. Proving these lat-
ter assumptions is beyond the scope of this article and remains as an interesting open problem.

In the self-renewal case (p(j)
S = 1

2) for a layer j, the bj function cannot be retrieved from
the current observation (Remark V.3), even if the migration proportion parameters can be
(Remark V.5). We speculate that supplying additional observation such as the age-weighted
distribution (

∫∞
0 aρ(j)(t, a)da) could help to recover the identification property. In the cumu-

lative formulation framework and suitable hypotheses, there is no particular difficulty with
this case (see Theorem 4.3, [93]).
Instead of the total cell number, we could consider microscopic observation. In [95], the au-
thors have shown, using a semi-group approach for the non-renewal version of the McKendrick–
VonFoerster equation, that the death rate can be determined from observation of the age
distribution at two time points including the initial time. Since, according to Lemma V.1,
there is a link between the net birth function ρ(t, 0) and the total number of cells m1, we
expect to be able to obtain similar results.
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1Additional (post-publication) comment: note that the hypothesis needed in Theorem V.1 can even be less
restrictive than Hypothesis V.5. Indeed, the proof of Theorem V.1 only requires that there is no overlapping
between the division times from different cell generations (mother, daughter, granddaughter cells etc).

2Additional (post-publication) comment: the proof is detailed in the case J = 2 with the natural choice
p

(2)
S = 1. In the case J > 2, one would need to modify boundary condition (V.20) as η(t, 0) = g(t) +

2p(j)
S

∫ +∞

0
b(a)η(t, a) with j > 1. The following steps can be achieved in the same way with no more difficulty.



148Chapter V. Inverse problem for a structured cell population dynamics model



Chapter VI
Discussion and perspectives

In this thesis, we modeled two stages of the ovarian follicle development during its basal
phase (follicle activation and compact growth) by combining stochastic and deterministic
formalisms. We then analyzed these two models with complementary theoretical and nu-
merical approaches and developed dedicated tools for this end. On the stochastic side, we
proposed a rigourous numerical algorithm based on the truncated domain method and cou-
pling techniques to compute some moments of a nonlinear stochastic process at the extinc-
tion time of a given cell population (Chapter 2). We studied the asymptotic behaviors of
an age- and type- structured cell population (multi-type Bellman–Harris model) subject to
unidirectional motion and derived explicit analytical formulas for the asymptotic cell number
moments. On the deterministic side, we analyzed as well the asymptotic behavior of the deter-
ministic counterpart of this model, which consists of a multi-type McKendrick–VonFoerster
equation. Adapting the relative entropy method, we showed the existence of stable age
state and obtained explicit analytical formulas (Chapter 3). We also studied the inverse
problem related to our deterministic model for some division rates (continuous compactly
supported functions) and different types of initial conditions (either compactly supported or
Dirac measures)(Chapter 5). For both stochastic and deterministic frameworks, we simulated
our models using classical algorithms (SSA algorithm [52] or Gillespie algorithm [61] for the
stochastic models) or designing new ones (finite volume method in Chapter 3 and finite dif-
ference method based on the method of charateristics in Chapter 5). Finally, we calibrated
our two models using a likelihood approach. To confront our dynamical models with rather
“time-free” data, we either enriched the dataset with kinetics information (Chapter 3) or
changed the time clock of our model (Chapter 2).

The two models presented have a common point: they both represent cell dynamics with
unidirectional motion. This means that the cell dynamics of a population decomposed into
J types evolves in a special way: a type-j cell can only be transformed or divide into one or
more type-> j cells. The transition rates between any two types may depend on the whole
system, such as for the activation follicle model presented in Chapter 2. Unidirectionality is a
pattern that can be found in other examples of cell biology: the immune system, neurogenesis
[9], horizontal gene transfer [167], cell labeling in cell kinetics studies [168]. In particular, the
non-local boundary condition of this model, associated with each cell division number i, only
takes into account contributions of cells with cell division number i − 1 (i.e. p(j)

S = 0). etc.
Very recently, the authors have analyzed in [167] the size dynamics of a population driven
by horizontal gene transfer, birth and death mechanisms. The population is structured by a

149



150 Chapter VI. Discussion and perspectives

trait taking a finite number of values. Using a large population analysis, they quantify the
asymptotic dynamics of each subpopulation size on a logarithm scale.
The unidirectionnal aspect of our models was an advantage since it allowed us to decompose
the global dynamics into subcategories, for example to prove asymptotic convergence results
(Chapter 3) or to solve an inverse problem (Chapter 5). It also allowed us to divide the dy-
namics of the transitional system of the model presented in Chapter 2 into two parts: before
and after the extinction of the precursor cell population. Depending on the behavior of the
first compartment (extinction, explosion or constant), it is therefore possible to characterize
the transient state of a cell population by providing characteristic times, which may be rele-
vant in a developmental biology context. This aspect has been highlighted in [167] where the
authors show the existence of “metastable” states: the asymptotic dynamics of their normal-
ized process is characterized by a succession of deterministic time intervals (phases) delimited
by changes of resident or dominant traits. As regards our Chapter 3 model, characteristic
times could correspond to a time sequence (tj)j∈J1,JK such that the process (ρ(i)(t, ·))i∈J1,jK
stabilizes around the stable age distribution (ρ̂(i))i∈J1,jK during the time interval [tj , tj+1].
Other characteristic times can be designed and it is thus still an open interesting question.

In this thesis, we have chosen to use a formalism where the spatial position of the cell is
represented by a discrete index, but a continuous index may be consider. For instance, the
multi-type MK–VF version (discrete types) presented in Chapter 3 was studied in a case of
continuous type variables in [48]. In this work, the authors extend the results proposed in
[26] and show the asymptotic convergence in a case where the “birth matrix” is reducible
and the “birth and death matrices” are non-smooth. A large population and size scale limit
analysis of the [CMMS] model [1] has been done recently in [3] (see details in Chapter 4),
where the author has obtained a Keller-Segel -like model. Suggestions for improvement were
proposed in Chapter 4 based on cancer models that have been the subject of recent works, see
for example [152, 154]. The approach based on the incompressible-compressible limit seems
to be an interesting aspect to be studied from many points of view: modeling, simulations,
theoretical analyses, etc. It would also make it possible to take a step forward in the under-
standing of the coupling between oocyte growth and cell proliferation.

To conclude, we have developed two numerical generators coupled with appropriate data
fitting procedures, that simulate the cell number of an ovarian follicle during the early stages
of its development (activation and compact growth phase) and enable us to reconstruct the
follicle spatial structure. These numerical tools can be used to explore new approaches such as
the incompressible-compressible limit, or be refined by adding ingredients: a finer calibration,
a finer spatial structure representation, a better representation of cell interactions (oocyte-
somatic cells, somatic cell-somatic cell) etc.
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A.1 Additionnal materials of Chapter 3

A.1.1 Supplemental proofs: deterministic model

Proof of Corollary III.1. According to Hypothesis III.4,

∃A > 0, ε > 0 such that ∀a ≥ A, bj(a) + λj > ε. (A.1)

Let k ∈ N. Using Hypothesis III.2, for all t ≥ A, we have:

0 ≤ tkbj(t)e
−

∫ t

0
[bj(s) + λj ] ds

≤ bjtke
−

∫ A

0
[bj(s) + λj ] ds

e
−

∫ t

A
[bj(s) + λj ] ds

.

Then, using (A.1) we obtain:

0 ≤ tkbj(t)e
−

∫ t

0
[bj(s) + λj ] ds

≤ tkKA,εe
−εt,

where KA,ε is a constant given by KA,ε := bje
−

∫ A

0
[bj(s) + λj − ε] ds

. As ε > 0, the function
t 7→ tke−εt is integrable on R+, and we deduce that

∫+∞
A tke−λjtdBj(t)dt < ∞. Using the

continuity of bj (Hypothesis III.2), we conclude that t 7→ e−λjtdBj(t)dt is integrable on
R+.

Proof of Corollary III.2. According to (III.11), we obtain:

∀j ∈ J1, cK, φ(j)(a)
2[p(j)

S φ(j)(0) + p
(j)
L φ(j+1)(0)]

=
∫ +∞

a
bj(s)e−

∫ s
a
λc+bj(u)duds .

According to Remark III.1 and Hypothesis/Definition III.2, we deduce that λc > −bj , ∀j ∈
J1, JK. Hence, using also Hypothesis III.2, we have:

φ(j)(a)
2[p(j)

S φ(j)(0) + p
(j)
L φ(j+1)(0)]

≥ bj
∫ +∞

a
e−(λc+bj)(s−a)ds =

bj

λc + bj
,
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and reminding that λc > 0 (see remark III.1), we also obtain the right-side of (III.12):

φ(j)(a)
2[p(j)

S φ(j)(0) + p
(j)
L φ(j+1)(0)]

≤
∫ +∞

a
bj(s)e−

∫ s
a
bj(u)duds

= [−e−
∫ s
a
bj(u)du]+∞a = 1 .

Proof of Lemma III.1. For j ∈ J1, JK, any solution of (III.6) in L1(R+) is given by:

φ̂(j)(a) = φ̂(j)(0)e
∫ a

0 [λj+bj(s)]ds[1− 2p(j)
S

∫ a

0
bj(s)e−

∫ s
0 [λj+bj(u)]duds] .

According to Hypothesis/Definition III.1, 1 = 2p(j)
S

∫+∞
0 bj(s)e−

∫ s
0 [λj+bj(u)]duds, thus

φ̂(j)(a) = 2p(j)
S φ̂(j)(0)

∫ +∞

a
bj(s)e−

∫ s
a

[λj+bj(u)]duds .

Finally, according to Remark III.1, λj > −bj and we obtain, using Hypothesis III.2,

φ̂(j)(a)
φ̂(j)(0)

= 2p(j)
S

∫ +∞

a
bj(s)e−

∫ s
a

[λj+bj(u)]duds ≥ 2p(j)
S bj

∫ +∞

a
e−(λj+bj)(s−a)ds = 2p(j)

S

bj

λj + bj
.

Then, we want to show that φ̂(j)(a) <∞ for all a ∈ R+ ∪ {∞}. Let

I(a) :=
∫ +∞

a
bj(s)e−

∫ s
0 [λj+bj(u)]duds .

Applying an integration by part to I(a), we obtain that, for all a ≥ 0,

I(a) =
[
e−
∫ s

0 [λj+bj(u)]du
]∞
a
− λj

∫ ∞
a

e−
∫ s

0 [λj+bj(u)]duds .

Hypothesis/Definition III.1 and Hypothesis III.2 imply that, for all a ≥ 0,
∫∞
a e−

∫ s
0 [λj+bj(s)]ds <

∞ and so,
lim
s→0

e−
∫ s

0 [λj+bj(u)]du = 0. Thus, we have:

I(a) = e−
∫ a

0 [λj+bj(u)]du − λj
∫ ∞
a

e−
∫ s

0 [λj+bj(u)]duds . (A.2)

Multiplying (A.2) by e
∫ a

0 [λj+bj(u)]du, we deduce:

φ̂(j)(a)
2p(j)
S φ̂(j)(0)

= 1− λj
∫ ∞
a

e−
∫ s
a

[λj+bj(u)]duds . (A.3)

If λj ≥ 0, we deduce directly from (A.3) that, for all a ∈ R+ ∪ {∞}, φ̂(j)(a)
2p(j)
S φ̂(j)(0)

≤ 1. We
assume that λj < 0. Using Hypothesis III.4, we deduce that there exists constants A > 0
and ε > 0 such that

∀a ≥ A, λj + bj(a) > ε > 0.
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Hence, with C = −λj
ε > 0, we have:

∀a ≥ A, −λj ≤ C(λj + bj(a)) .

Applying this inequality to (A.3), we obtain:

∀a ≥ A, φ̂(j)(a)
2p(j)
S φ̂(j)(0)

≤ 1 + C

∫ ∞
a

[λj + bj(s)]e−
∫ s

0 [λj+bj(u)]duds× e
∫ a

0 [λj+bj(s)]ds .

Again, using Hypothesis/Definition III.1 and Hypothesis III.2, we obtain:∫ ∞
a

[λj + bj(s)]e−
∫ s

0 [λj+bj(u)]duds =
[
−e−

∫ s
0 [λj+bj(u)]du

]∞
a

= e−
∫ a

0 [λj+bj(u)]du .

We deduce
∀a ≥ A, φ̂(j)(a)

2p(j)
S φ̂(j)(0)

≤ 1 + C .

As φ̂(j) is continuous, we conclude that

∀a ∈ R+ ∪ {+∞},
φ̂(j)(a)

2p(j)
S φ̂(j)(0)

<∞ .

Proof of Lemma III.2. Deriving � e−λctρ(t, ·), φ� with respect to t, we obtain
d

dt
� e−λctρ(t, ·), φ�= −e−λct � (λc1 + B + ∂a)ρ(t, ·), φ� .

By integration by part and using that ρ ∈ L1(R+)J and φ ∈ C1
b (R+)J , we have

� ∂aρ(t, ·), φ�= −ρ(t, 0)Tφ(0)− � ρ(t, ·), ∂aφ� ,

and we deduce
d

dt
� e−λctρ(t, ·), φ�= e−λct

[
ρ(t, 0)Tφ(0)+� ρ(t, ·), ∂aφ� −� (λc1 + B)ρ(t, ·), φ�] .

As we have (λc1 + B)T = (λc1+ B), it comes

� ρ(t, ·), ∂aφ� −� (λc1 + B)ρ(t, ·), φ�=� ρ(t, ·), ∂aφ− (λc1+ B)φ� .

Then, using that LDφ = λcφ, we deduce (∂a − λc1− B)φ = −K(·)Tφ(0). Thus,
d

dt
� e−λctρ(t, ·), φ�= e−λct

[
ρ(t, 0)Tφ(0)− � ρ(t, ·),K(·)Tφ(0)�

]
.

Note that � ρ(t, ·),K(·)Tφ(0)�=� K(·)ρ(t, ·), φ(0)�= ρ(t, 0)Tφ(0). Consequently,
d

dt
� e−λctρ(t, ·), φ�= 0 .

Hence,
∀t, � e−λctρ(t, ·), φ�=� ρ0(·), φ� = η .

Thanks to the renormalization � ρ̂, φ�= 1, we obtain the conservation principle:

� e−λctρ(t, ·)− ηρ̂, φ�=� e−λctρ(t, ·), φ� −η � ρ̂, φ�= 0 .
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Proof of Lemma III.3. From the linearity of the system, it can be easily shown that h is
solution of {

∂th(t, a) + ∂ah(t, a) + [λc +B(a)]h(t, a) = 0, t ≥ 0, a ≥ 0,
h(t, a = 0) =

∫∞
0 K(a)h(t, a)da.

Let f be a derivable function. Applying the chain rules, it comes, for j ∈ J1, JK,

∂tf [h(j)(t, a)] + ∂af [h(j)(t, a)] = f ′(h(j)(t, a))[∂th(j)(t, a) + ∂ah
(j)(t, a)]

= −[λc + bj(a)]× h(j)(t, a)f ′(h(j)(t, a)) .

For f(x) = |x|, f ′(x) = |x|
x , we deduce

∂t|h(j)(t, a)|+ ∂a|h(j)(t, a)| = −[λc + bj(a)]|h(j)(t, a)| .

Lemma A.1. [Modified Grönwall lemma] Let N ∈ N∗. Suppose that ∀i ∈ J1, NK, there exist
κi ∈ R∗+, γ ∈ R∗+ and Pi polynomials of degree αi ∈ N such that

F ′(t) ≤
N∑
i=1

Pi(t)e−κit − γF (t).

Then,

F (t) ≤ Ke−γt +
N∑
i=1

P̃i(t)e−κit,

where K is a constant and for all i ∈ J1, NK, P̃i is a polynomial of degree α̃i ≤ αi + 1.

Proof. Note that d
dt(e

γtF (t)) = (F ′(t) + γF (t))× eγt. Hence,

d

dt
(eγtF (t)) ≤

N∑
i=1

Pi(t)e(−κi+γ)t.

Then, integrating on the interval [0, t], we obtain

eγtF (t)− F (0) ≤
N∑
i=1

P̃i(t)e(γ−κi)t +K.

Hence

F (t) ≤ (F (0) +K)e−γt +
N∑
i=1

P̃i(t)e−κit,

where K is a constant and for all i ∈ J1, NK, P̃i a polynomial of degree α̃i ≤ αi + 1 (the
degree increases when γ = κi).
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A.1.2 Supplemental proofs: Stochastic model

For any f : (t, a) 7→ (f (j)
t (a))j∈J1,JK ∈ B1

b (R+ × R+,R)J (the space product of the set of
bounded functions with bounded derivatives), we note ∂1 and ∂2 respectively its derivative
with respect to time (t) and age (a).

Lemma A.2. Let F ∈ C1(R,R), f ∈ B1
b (R+ × R+,R)J .

F [� Zt, ft �] = F [� f0, Z0 �] +
∫ t

0
� ∂1fs + ∂2fs, Zs � F ′[� fs, Zs �]ds

+
∫

[0,t]×E

[
1k≤Ns−

(
F [� fs, 2δI(k)

s−
,0 − δI(k)

s−
,A

(k)
s−

+ Zs− �]− F [� fs, Zs− �]
)
10≤θ≤m1(s,k,Z)

+
(
F [� fs, δI(k)

s−+1,0 + δ
I

(k)
s ,0 − δI(k)

s− ,A
(k)
s−

+ Zs− �]− F [� fs, Zs− �]
)
1m1(s,k,Z)≤θ≤m2(s,k,Z)

+
(
F [� fs, 2δI(k)

s−
+1,0 − δI(k)

s− ,A
(k)
s−

+ Zs− �]− F [� fs, Zs− �]
)
1m2(s,k,Z)≤θ≤m3(s,k,Z)

]
Q(ds, dk, dθ).

Proof. We integrate ft against the measure Zt

� Zt, ft �=
N0∑
k=1

f
(I(k)

0 )
t (A(k)

0 + t)

+
∫

[0,t]×E

[
1k≤Ns−

(
2f

(I(k)
s−

)
t (t− s)− f

(I(k)
s−

)
t (A(k)

s− + t− s)
)
10≤θ≤m1(s,k,Z)

+
(
f

(I(k)
s−

)
t (t− s) + f

(I(k)
s−

+1)
t (t− s)− f

(I(k)
s−

)
t (A(k)

s− + t− s)
)
1m1(s,k,Z)≤θ≤m2(s,k,Z)

+
(

2f
(I(k)
s−

+1)
t (t− s)− f

(I(k)
s−

)
t (A(k)

s− + t− s)
)
1m2(s,k,Z)≤θ≤m3(s,k,Z)

]
Q(ds, dk, dθ).

Derivating f (j)
t [a+ t− s], we obtain

d

dt

[
f

(j)
t [a+ t− s]

]
= ∂1f

(j)
t [a+ t− s] + ∂2f

(j)
t [a+ t− s]

⇒
∫ t

s

d

du

[
f (j)
u [a+ u− s]

]
du =

∫ t

s

[
∂1f

(j)
u [a+ u− s] + ∂2f

(j)
u [a+ u− s]

]
du

⇒ f
(j)
t [a+ t− s] = f (j)

s [a] +
∫ t

s

[
∂1f

(j)
u [a+ u− s] + ∂2f

(j)
u [a+ u− s]

]
du.
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Then, replacing j by the index I(k)
s− and a by A(k)

s− or 0, it comes

� Zt, ft �=
N0∑
k=1

f
(I(k)

0 )
0 (A(k)

0 ) + T0 + T1 + T2 + T3

+
∫

[0,t]×E
1k≤Ns−

[(
2f

(I(k)
s−

)
s (0)− f

(I(k)
s−

)
s (A(k)

s− )
)
10≤θ≤m1(s,k,Z)

+
(
f

(I(k)
s−

)
s (0) + f

(I(k)
s−

+1)
s (0)− f

(I(k)
s−

)
s (A(k)

s− )
)
1m1(s,k,Z)≤θ≤m2(s,k,Z)

+
(

2f
(I(k)
s−

+1)
s (0)− f

(I(k)
s−

)
s (A(k)

s− )
)
1m2(s,k,Z)≤θ≤m3(s,k,Z)

]
Q(ds, dk, dθ),

where

T0 =
N0∑
k=1

∫ t

0

[
∂1f

(I(k)
0 )

u (A(k)
0 + u) + ∂2f

(I(k)
0 )

u (A(k)
0 + u)

]
du,

T1 =
∫

[0,t]×E
1k≤Ns−

∫ t

s

[
2∂1f

(I(k)
s−

)
u (u− s) + 2∂2f

(I(k)
s−

)
u (u− s)− ∂1f

(I(k)
s−

)
u (A(k)

s− + u− s)

−∂2f
(I(k)
s−

)
u (A(k)

s− + u− s)10≤θ≤m1(s,k,Z)

]
duQ(ds, dk, dθ)

T2 =
∫

[0,t]×E
1k≤Ns−

∫ t

s

[
∂1f

(I(k)
s−

)
u (u− s) + ∂1f

(I(k)
s−

+1)
u (u− s) + ∂2f

(I(k)
s−

)
u (u− s)

+ ∂2f
(I(k)
s−

+1)
u (u− s)− ∂1f

(I(k)
s−

)
u (A(k)

s− + u− s)

−∂2f
(I(k)
s−

)
u (A(k)

s− + u− s)1m1(s,k,Z)≤θ≤m2(s,k,Z)

]
duQ(ds, dk, dθ),

and

T3 =
∫

[0,t]×E
1k≤Ns−

∫ t

s

[
2∂1f

(I(k)
s−

+1)
u (u− s) + 2∂2f

(I(k)
s−

+1)
u (u− s)− ∂1f

(I(k)
s−

)
u (A(k)

s− + u− s)

−∂2f
(I(k)
s−

)
u (A(k)

s− + u− s)1m2(s,k,Z)≤θ≤m3(s,k,Z)

]
duQ(ds, dk, dθ) .
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As the partial differential of each f (j) are uniformly bounded, we can apply the Fubini theorem
on T0, T1, T2 and T3:

T0 =
∫ t

0
� ∂1fu + ∂2fu,

N0∑
k=1

δ
I

(k)
0 ,A

(k)
0 +u � du,

T1 =
∫ t

0

[
� ∂1fu + ∂2fu,

∫ u

0

∫
E
1k≤Ns−

(
2δ
I

(k)
s−
,u−s − δI(k)

s−
,A

(k)
s−

+u−s

)
10≤θ≤m1(s,k,Z)Q(ds, dk, dθ)�

]
du,

T2 =
∫ t

0

[
� ∂1fu + ∂2fu,

∫ u

0

∫
E
1k≤Ns−

(
δ
I

(k)
s−
,u−s + δ

I
(k)
s−

+1,u−s

−δ
I

(k)
s−
,A

(k)
s−

+u−s

)
1m1(s,k,Z)≤θ≤m2(s,k,Z)Q(ds, dk, dθ)�

]
du,

T3 =
∫ t

0

[
� ∂1fu + ∂2fu,

∫ u

0

∫
E
1k≤Ns−

(
2δ
I

(k)+1
s−

,u−s − δI(k)
s−
,A

(k)
s−

+u−s

)
1m2(s,k,Z)≤θ≤m3(s,k,Z)Q(ds, dk, dθ)�

]
du.

Finally, using the stochastic differential equation (III.4)

T0 + T1 + T2 + T3 =
∫ t

0
� ∂1fu + ∂2fu, Zu � du.

Consequently, we obtain

� ft, Zt � =� f0, Z0 � +
∫ t

0
� ∂1fs + ∂2fs, Zs � ds

+
∫

[0,t]×E
1k≤Ns−

[
� fs, 2δI(k)

s−
,0 − δI(k)

s−
,A

(k)
s−
� 10≤θ≤m1(s,k,Z)

+� fs, δI(k)
s−
,0 + δ

I
(k)
s−

+1,0 − δI(k)
s−
,A

(k)
s−
� 1m1(s,k,Z)≤θ≤m2(s,k,Z)

+� fs, 2δI(k)
s−

+1,0 − δI(k)
s−
,A

(k)
s−
� 1m2(s,k,Z)≤θ≤m3(s,k,Z)

]
Q(ds, dk, dθ),

which gives us Lemma A.2 for F (x) = x. We conclude by applying the Ito’s formula (see
[151], p.68-70).

We introduce the sequence of stopping times ξN .

Definition A.1. Let ξN a sequence of stopping times defined as

ξN = sup
(
t : Nt < N, � a, Zt �< N

)
.

Proof of Hypothesis III.6. We first start by showing (III.19).

Nt = N0 +
∫

[0,t]×E
1k≤Ns−10≤θ≤b

I
(k)
s−

(A(k)
s−

)Q(ds, dk, dθ).
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Thus,

sup
s≤t∧ξN

Ns ≤ N0 +
∫ t∧ξN

0

∫
E
1k≤Ns−10≤θ≤b̄Q(ds, dk, dθ),

where b̄ := sup
j∈J0,JK

b̄j . Taking the expectation and using the Poisson measure properties, we

obtain

E[ sup
s≤t∧ξN

Ns] ≤ E[N0] + b̄E
[∫ t∧ξN

0
Nsds

]
≤ E[N0] + b̄E

[∫ t∧ξN

0
sup

u≤s∧ξN
Nuds

]
.

Hence,

E[ sup
s≤t∧ξN

Ns] ≤ E[N0] + b̄E
[∫ t

0
sup

u≤s∧ξN
Nuds

]
.

By Fubini theorem, we deduce that

E[ sup
s≤t∧ξN

Ns] ≤ E[N0] + b̄

∫ t

0
E
[

sup
u≤s∧ξN

Nu

]
ds.

Applying Grönwall lemma, we deduce for all t ≤ T that

E[ sup
s≤t∧ξN

Ns] ≤ E[N0]eb̄t.

Hence,
E[ sup
t≤T∧ξN

Nt] ≤ E[N0]eb̄T <∞ .

Using the same method, we also deduce that E
[
supt≤T � a, Zt �

]
<∞.

Then, we use the same approach as [84] (Theorem 2.2.8) to compute the infinitesi-
mal generator of Zt, denoted by G. By construction, (Zt)t∈R+ is a markovian process of
D([0, T ],MP (J1, JK × R+)). Let f ∈ C1

b(E ,R), by definition, GF := lim
t→0

d
dtE

[
F [� f, Zt �]

]
.

Taking the expectation of the expression of � f, Zt∧ξN � given in lemma A.2, we obtain

E [F [� f, Zt∧ξN �]] = E [F [� f, Z0 �]]

+E
[∫ t∧ξN

0
� ∂af, Zs � F ′[� f, Zs �]ds

]
+ E

[
χf,F (t ∧ ξN , Z)

]
,

where

χf,F (t, Z) :=
∫ t

0

∫
E

[
(F [� f, 2δj,0 − δj,a + Zs �]− F [< f,Zs >]) p(j)

2,0

+ (F [< f, δj+1,0 + δj,0 − δj,a + Zs >]− F [� f, Zs �]) p(j)
1,1

+ (F [< f, 2δj+1,0 − δj,a + Zs >]

−F [< f,Zs >]) p(j)
0,2

]
bj(a)Zs(dj, da)ds.

We have the following estimates,

E
[
χf,F (t ∧ ξN , Z)

]
≤ 2E

[
supt≤T Nt

]
T‖F‖∞b̄,

E[
∫ t∧ξN

0 � ∂afs, Zs � F ′[� f, Zs �]ds] ≤ E
[
supt≤T Nt

]
T × ‖∂af‖∞×‖F ′‖∞.
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Those bounds are independent of N thanks to (III.19), so that we may let N goes to infinity.
Moreover,

d

dt

∫ t

0
� ∂af, Zs � F ′[� f, Zs �]ds =� ∂af, Zt � F ′[� f, Zt �]

which is also dominated by E
[
supt≤T Nt

]
× ‖∂af‖∞×‖F ′‖∞. Also,

∂
∂tχ(t, Zt) =

∫
E

[
(F [< f, 2δj,0 − δj,a + Zt >]− F [< f,Zt >]) p(j)

2,0

+ (F [� f, δj+1,0 + δj,0 − δj,a + Zt �]− F [� f, Zt �]) p(j)
1,1

+ (F [� f, 2δj+1,0 − δj,a + Zt �]− F [� f, Zt �]) p(j)
0,2

]
bj(a)Zt(dj, da).

| ∂∂tχ(t, Zt)| is dominated P-p.s by 2E
[
supt≤T Nt

]
‖F‖∞b̄. We can thus apply the differentiating

theorem under the integral sign E and conclude.

Proof of Lemma III.5. Introducing the compensated Poisson measure Q̃,
Q̃(ds, dk, dθ) := Q(ds, dk, dθ)− dsdkdθ, we define the process:

MF,f
t :=

∫ ∫
[0,t∧ξN ]×E

1k<Ns−

[(
F [� f, 2δIk

s−
,0 − δIk

s−
,Ak
s−

+ Zs− �] − F [� f, Zs− �]
)
10≤θ≤m1(s,k,Z)

+
(
F [� f, δIk

s−
+1,0 + δIk

s−
,0 − δIk

s−
,Ak
s−

+ Zs− �]− F [� f, Zs− �]
)
1m1(s,k,Z)≤θ≤m2(s,k,Z)

+
(
F [� f, 2δIk

s−
+1,0 − δIk

s−
,Ak
s−

+ Zs− �]− F [� f, Zs− �]
)
1m2(s,k,Z)≤θ≤m3(s,k,Z)

]
Q̃(ds, dk, dθ).

We can verify that MF,f
t is a martingale as an integral against a compensated Poisson

measure. Then, applying Lemma A.2 and the definition of the generator given in theorem
III.6, we show that

MF,f
t = F [� f, Zt �]− F [� f, Z0 �]−

∫ t

0
GF [� f, Zs �]ds . (A.4)

We turn now to the computation of the quadratic variation and use the same approach as in
[79]. We apply (A.4) for F (x) = x2. Note that we cannot use directly this result as x 7→ x2 is
not bounded and we need to first use a localizing sequence (see [83] p. 382, theorem 13.14).
We obtain that

� f, Zt �2 − � f, Z0 �2 −
∫ t

0
2� f, Zs � ×� ∂af, Zs � ds

−
∫ t

0

J∑
j=1

∫
R+

[(
� f, 2δj,0 − δj,a + Zs �2 − � f, Zs �2

)
bj(a)p(j)

2,0

−
(
� f, δj,0 + δj+1,0 − δj,a + Zs �2 − � f, Zs �2) bj(a)p(j)

1,1Zs(dj, da)

−
(
� f, 2δj+1,0 − δj,a + Zs �2 − � f, Zs �2) bj(a)p(j)

0,2Zs(dj, da)ds
]

(A.5)
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is a martingale. Then, applying (A.4) for F (x) = x (using a localizing sequence again), we
get that

� f, Zt � = � f, Z0 � +
∫ t

0
� ∂af, Zs � ds

+
∫ t

0

[ J∑
j=1

∫
R+
� f, 2δj,0 − δj,a � bj(a)p(j)

2,0Zs(dj, da)
]
ds

+
∫ t

0

[ J∑
j=1

∫
R+
� f, δj,0 + δj+1,0 − δj,a � bj(a)p(j)

1,1Zs(dj, da)
]
ds

+
∫ t

0

[ J∑
j=1

∫
R+
� f, 2δj+1,0 − δj,a � bj(a)p(j)

0,2Zs(dj, da)
]
ds+Mf

t

is a semi-martingale. Applying the Ito formula (see [151], p. 78-79), we obtain

� f, Zt �2 − � f, Z0 �2 −
∫ t

0
2� f, Zs � ×� ∂af, Zs � ds

+
J∑
j=1

∫
R+

(2� f, Zs � ×� f, 2δj,0 − δj,a �) bj(a)p(j)
2,0Zs(dj, da)

+
J∑
j=1

∫
R+

(2� f, Zs � ×� f, δj,0 + δj+1,0 − δj,a �) bj(a)p(j)
1,1Zs(dj, da)

+
J∑
j=1

∫
R+

(2� f, Zs � ×� f, 2δj+1,0 − δj,a �) bj(a)p(j)
0,2Zs(dj, da)

]
ds

−
〈
Mf ,Mf

〉
t

(A.6)

is a martingale. We consider the jump corresponding to the case when the two daughter cells
remain on their mother layer. Note that

� f, 2δj,0−δj,a+Zs �2 − � f, Zs �2= 2� f, Zs � ×� f, 2δj,0−δj,a � +� f, 2δj,0−δj,a �2 .

We proceed similarly for the two other jumps. Applying the Doob-Meyer theorem ([151],
p. 106), we deduce the quadratic variation

〈
Mf ,Mf

〉
t
comparing (A.5) and (A.6).

A.1.3 Supplemental proofs: Moment study
Generating functions

Proof of Lemma III.6. Let a ≥ 0. Remind that the generating function is given by

F (i,a)[s; t] =
∑

k∈NJ
skP

[
Y a
t = k|Z0 = δi,0

]
.

Let i ∈ J1, JK and j,k ∈ NJ . We note P aj,k(t) := P
[
Y a
t = k|Z0 =

∑J
i=1 jiδi,0

]
. We write the

backward equation for the probability P aei,k(t) := P
[
Y a
t = k|Z0 = δi,0

]
. Starting from a single

mother cell of age 0 and layer i, there are three possibilities at time t: (i) the cell has not
divided and t ≤ a, (ii) the cell has not divided and t > a, and (iii) the cell has divided. Thus,

P aei,k(t) =
(
δei,k1t≤a + δ0,k1t>a

)
P[τ (i)(a0 = 0) ≥ t]

+
∫ t

0
[p(i)

2,0P
a
2ei,k(t− y) + p

(i)
1,1P

a
ei+ei+1,k(t− y) + p

(i)
0,2P

a
2ei+1,k(t− y)]dBi(y)dy (A.7)
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where P[τ (i)(a0 = 0) ≥ t] = e−
∫ t

0 bi(s)ds1t≥0 = 1− Bi(t).
Applying the branching property, we have for all y ∈ [0, t], for all i ∈ J1, JK

P a2ei,k(y) =
∑

k1,k2/k1+k2=k
[P aei,k1(y)P aei,k2(y)],

and also, for all i ∈ J1, J − 1K,

P aei+ei+1,k(y) =
∑

k1,k2/k1+k2=k
P aei+1,k1(y)P aei,k2(y) .

Hence, we can rewrite the expression of

At :=
∫ t

0
[p(i)

2,0P
a
2ei,k(t− y) + p

(i)
1,1P

a
ei+ei+1,k(t− y) + p

(i)
0,2P

a
2ei+1,k(t− y)]dBi(y)dy

as

At = p
(i)
2,0

∫ t

0

∑
k1,k2/k1+k2=k

P aei,k1(t− y)P aei,k2(t− y)dBi(y)dy

+ p
(i)
1,1

∫ t

0

∑
k1,k2/k1+k2=k

P aei+1,k1(t− y)P aei,k2(t− y)dBi(y)dy

+ p
(i)
0,2

∫ t

0

∑
k1,k2/k1+k2=k

P aei+1,k1(t− y)P aei+1,k2(t− y)dBi(y)dy.

Note that∑
k∈NJ

skP a2ei,k(t− y) =
∑

k∈NJ
sk ∑

k1,k2/k1+k2=k
P aei,k1(t− y)P aei,k2(t− y)

=
∑

k∈NJ

k∑
k1=0

sk1P aei,k1(t− y)sk−k1P aei,k−k1(t− y).

We note
∑k

k1=0 the sum of all the k1 ∈ NJ vectors such that k1 ≤ k component by component.
We have

∑
k∈NJ

skP a2ei,k(t− y) =
∑

k∈NJ

k∑
k1=0

sk1P aei,k1(t− y)sk−k1P aei,k−k1(t− y)

=
∑

k1∈NJ
sk1P aei,k1(t− y)

∑
k≥k1

sk−k1P aei,k−k1(t− y)

= (
∑

k1∈NJ
sk1P aei,k1(t− y))(

∑
k2∈NJ

sk2P aei,k2(t− y)).

Hence, ∑
k∈NJ

skP a2ei,k(t− y) = (F (i,a)[s; t− y])2. (A.8)

In the same way, we also obtain∑
k∈NJ

skP aei+ei+1,k(t− y) = F (i,a)[s; t− y]F (i+1,a)[s; t− y]
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and ∑
k∈NJ

skP a2ei+1,k(t− y) = (F (i+1,a)[s; t− y])2. (A.9)

Finally, multiplying (A.7) by sk, summing on k ∈ NJ and applying (A.8)-(A.9), we obtain:

∀i ∈ J1, JK, F (i,a)[s; t] = (si1t≤a + 1t>a)(1− Bi(t)) +
∫ t

0
f (i)(F [s; t− y])dBi(y)dy.

First moments

Proof of Lemma III.7. By classical property, Ma
i,j(t) = ∂

∂sj
F (i,a)[s; t]|s=1. From (III.6) it

comes that

∂

∂sj
F (i,a)[s; t] = δi,j(1− Bi,i(t))1t≤a +

∫ t

0

∂

∂sj
f (i)[F a(s, y)

]
dBi(t− y)dy

where

∂

∂sj
f (i)[F a(s, t)] = 2p(i)

2,0F
(i,a)[s; t] ∂

∂sj
F (i,a)[s; t] + 2p(i)

0,2F
(i+1,a)[s; t] ∂

∂sj
F (i+1,a)[s; t]

+ p
(i)
1,1
[
F (i+1,a)[s; t] ∂

∂sj
F (i,a)[s; t] + F (i,a)[s; t] ∂

∂sj
F (i+1,a)[s; t]

]
.

For s = 1, knowing that F (i,a)(1, t) = 1, we get

Ma
i,j(t) = δi,j(1− Bi(t))1t≤a

+
∫ t

0

[
2p(i)

2,0M
a
i,j(y) + p

(i)
1,1[Ma

i,j(y) +Ma
i+1,j(y)] + 2p(i)

0,2M
a
i+1,j(y)

]
dBi(t− y))dy

which can be rewritten as

Ma
i,j(t) = δi,j(1− Bi(t))1t≤a +

[
2p(i)
S M

a
i,j + 2p(i)

L M
a
i+1,j

]
∗ dBi(t).

Harris lemmas
We recall some results on the renewal theory presented in [65], p.161-163.
Let G be a distribution function on (0,∞) with the additional assumption G(0+) = 0. We
consider the renewal equation

K(t) = f(t) +m

∫ t

0
K(t− u)dG(u) = f(t) +mK ∗G(t)

where m is a positive constant representing the mean number of children, f is a continuous
function representing a source term and G is the life time distribution. In addition, we
suppose that G is not lattice.

Lemma A.3 (Harris’s lemma 2, p.161). Suppose that there exists a Malthus parameter α
such that m

∫∞
0 e−αtdG(t) = 1, and that the following conditions also hold:
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(a) f(t)e−αt is a continuous function such that f(t)e−αt ∈ L1(R+).

(b)
∫ ∞

0
t2dG(t) <∞.

Then, K(t) ∼ nfeαt, where

nf =
∫∞

0 f(t)e−αtdt
m
∫∞

0 te−αtdG(t) .

Lemma A.4 (Harris’s lemma 4, p.163). Suppose that m < 1 and lim
t→∞

f(t) = c. then
K(t)→ c

1−m .

Additional computation details for the proof of Hypothesis III.4
We detail how to obtain Formula (III.31). We first take the Laplace transform of (III.24)

for α = λc for i = c+ 1 and j ∈ Jc+ 1, JK. We distinguish the case i = j from the others. If
j = c+ 1, we obtain∫ ∞

0
Ma
j,j(t)e−λctdt = 1

ρ̂(j)(0)

∫ a

0
ρ̂(j)(t)dt+ 2p(j)

S

∫ ∞
0

[∫ t

0
dBj(t− u)Ma

j,j(u)du
]
e−λctdt.

By the Laplace transform property for the convolution, we deduce that∫ ∞
0

[∫ t

0
dBj(t− u)Ma

j,j(u)du
]
e−λctdt = dB∗j (λc)

∫ ∞
0

Ma
j,j(t)e−λctdt,

hence∫ ∞
0

Ma
j,j(t)e−λctdt = 1

ρ̂(j)(0)

∫ a

0
ρ̂(j)(t)dt+ 2p(j)

S dB∗j (λc)
∫ ∞

0
Ma
j,j(t)e−λctdt

= 1
ρ̂(j)(0)× (1− 2p(j)

S dB∗j (λc))

∫ a

0
ρ̂(j)(t)dt.

When j > c+ 1, we have:∫ ∞
0

Ma
c+1,j(t)e−λctdt = 2p(c+1)

S dB∗c+1(λc)
∫ ∞

0
Ma
c+1,j(t)e−λctdt+2p(c+1)

L dB∗j (λc)
∫ ∞

0
Ma
c+2,j(t)e−λctdt.

Hence,

∫ ∞
0

Ma
c+1,j(t)e−λctdt = 2p(c+1)

L

1− 2p(c+1)
S dB∗c+1(λc)

∫ ∞
0

Ma
c+2,j(t)e−λctdt.

Here, we obtain a recurrence formula between
∫ ∞

0
Ma
c+1,j(t)e−λctdt and

∫ ∞
0

Ma
c+2,j(t)e−λctdt,

and we obtain (III.31).

Second moments

Definition A.2. Let a ≥ 0. We define the second moment

La(t) := (E[(Y (a,j)
t )2|Z0 = δi,0])i,j∈J1,JK .
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Lemma A.5. La(t) is solution of the renewal equation: ∀(i, j) ∈ J1, JK2,

Lai,j(t) = δi,j(1− Bi(t))1t≤a + [2p(i)
S L

a
i,j + 2p(i)

L L
a
i+1,j ] ∗ dBi(t)

+[2p(i)
2,0(Ma

i,j)2 + 2p(i)
1,1M

a
i,jM

a
i+1,j + 2p(i)

0,2(Ma
i+1,j)2] ∗ dBi(t).

(A.10)

Proof of Lemma (A.5). Note that ∂2

∂sj
F (i,a)[s; t]|s=1 = Lai,j(t) −Ma

i,j(t) . We derive (A.1.3)
with respect to sj and obtain:

∂2

∂s2
j

F (i,a)[s; t
]

=
∫ t

0

∂

∂s2
j

f (i)(F a[s, u]
)
dBi(t− u)du

where

∂2

∂s2
j

f (i)(F a[s, t]) = 2p(i)
2,0

(
F (i,a)[s; t] ∂

2

∂sj
F (i,a)[s; t] + ( ∂

∂sj
F (i,a)[s; t])2

)

+ 2p(i)
0,2

(
F (i+1,a)[s; t] ∂

2

∂sj
F (i+1,a)[s; t] + ( ∂

∂sj
F (i+1,a)[s; t])2

)

+p(i)
1,1

(
F (i+1,a)[s; t] ∂

2

∂sj
F (i,a)[s; t] + 2 ∂

∂sj
F (i,a)[s; t] ∂

∂sj
F (i+1,a)[s; t] + F (i,a)[s; t] ∂

2

∂sj
F (i+1,a)[s; t]

)
.

When s = 1, we get

Lai,j(t)−Ma
i,j(t) = 2p(i)

2,0

(
Lai,j −Ma

i,j + (Ma
i,j)2

)
∗dBi(t)+2p(i)

0,2

(
Lai+1,j −Ma

i+1,j + (Ma
i+1,j)2

)
∗dBi(t)

+ p
(i)
1,1

(
Lai,j −Ma

i,j + 2Ma
i,jM

a
i+1,j + Lai+1,j −Ma

i+1,j

)
∗ dBi(t).

Using the system of equations (III.24), we deduce (A.10).

Theorem A.1. Under the same hypotheses as in Hypothesis III.4, and supposing that for
all i ∈ J1, JK, λi > 0, we have, for all a ≥ 0:

∀i ∈ J1, JK, ∀k ∈ J0, J − iK Lai,i+k(t) ∼ L̃i,i+k(a)e2λi,i+kt, as t→∞

such that

L̃i,i(a) =
2p(i)

2,0dB∗i (2λi)(M̃a
i,i)2

1− 2p(i)
S dB∗i (2λi)

,

and for k ∈ J1, J − iK,

L̃i,i+k(a) =



2p(i)
2,0(M̃a

i,i+k)2dB∗i (2λi,i+k)

1− 2p(i)
S dB∗i (2λi,i+k)

+ li,i+k(a), if λi,i+k 6= λi

2p(i)
2,0(M̃a

i,i+k)2dB∗i (2λi,i+k)

1− 2p(i)
S dB∗i (2λi,i+k)

, if λi,i+k = λi

where

li,i+k(a) =

[
L̃i+1,i+k(a) + 2p(i)

1,1M̃
a
i,i+kM̃

a
i+1,i+k + 2p(i)

0,2(M̃a
i+1,i+k)2

]
dB∗i (2λi,i+k)

1− 2p(i)
S dB∗i (2λi,i+k)

.
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Proof. Let a ≥ 0. We introduce the following notations

L̂ai,i+k(t) = Lai,i+k(t)e−2λi,i+kt, d̂Bi(t) = dBi(t)
dB∗i (2λi,i+k)

e−2λi,i+kt.

We use the same approach as that performed for the proof of Hypothesis III.4, and proceed
by recurrence:

Hk : ∀i ∈ J1, J − kK, Lai,i+k(t) ∼ L̃ai,i+ke2λi,i+kt, as t→∞.

When k = 0, according to (A.10) Lai,i is solution of the renewal equation:

Lai,i(t) = (1− Bi(t))1t≤a + 2p(i)
2,0(Ma

i,i)2 ∗ dBi(t) + 2p(i)
S L

a
i,i ∗ dBi(t). (A.11)

We rescale (A.11) by e−2λit and obtain:

L̂ai,i(t) = e−2λit
[
(1− Bi(t))1t≤a + 2p(i)

2,0(Ma
i,i)2 ∗ dBi(t)

]
+ 2p(i)

S dB
∗
i (2λi)L̂ai,i ∗ d̂Bi(t).

Note that as 2λi > λi > 0, we have 2p(i)
S dB∗i (2λi) < 1, so that we can use Lemma A.4. We

compute the limit of the source term :

lim
t→∞

e−2λit
[
(1− Bi(t))1t≤a + 2p(i)

2,0(Ma
i,i)2 ∗ dBi(t)

]
.

From Hypothesis III.2, we have:∫ ∞
0

(1− Bi(t))1t≤ae−λitdt ≤
1
b̄i

∫ ∞
0

dBi(t)e−λitdt <∞.

Thus, (1− Bi(t))1t≤ae−λit ∈ L1(R+) and, lim
t→∞

e−λit [1− Bi(t)] = 0. Using the hypothesis
λi > 0, we obtain that lim

t→∞
e−2λit [1− Bi(t)] = 0. Then,

e−2λit(Ma
i,i)2 ∗ dBi(t) =

∫ ∞
0

1[0,t](Ma
i,i(t− u)e−λi(t−u))2dBi(u)e−2λiudu.

Using Hypothesis III.4, we have Ma
i,i(t) ∼ eλitM̃i,i(a), as t → ∞. Applying Lebesgue domi-

nated convergence theorem, we obtain

lim
t→∞

e−2λit(Ma
i,i)2 ∗ dBi(t) = (M̃i,i(a))2dB∗i (2λi).

Then, applying Lemma A.4, we deduce:

Lai,i(t) ∼ L̃i,i(a)e2λit, as t→∞, where L̃i,i(a) = 2p(i)
2,0dB

∗
i (2λi)(M̃i,i(a))2

1−2p(i)
S dB∗i (2λi)

.

Hence, H0 is true. Then, we suppose that Hk−1 holds and we show Hk. According to (A.10),
we write the equation for Lai,i+k and rescale it by e−2λi,i+kt:

L̂ai,i+k(t) = 2p(i)
S dB

∗
i (2λi,i+k)L̂ai,i+k ∗ d̂Bi(t) + e−2λi,i+kt2p(i)

L L
a
i+1,i+k ∗ dBi(t)

+ e−2λi,i+kt
[
2p(i)

2,0(Ma
i,i+k)2 + 2p(i)

1,1M
a
i,i+kM

a
i+1,i+k + 2p(i)

0,2(Ma
i+1,i+k)2

]
∗ dBi(t).
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Here, m = 2p(i)
S dB∗i (2λi,i+k) < 1, so that we can use Lemma A.4. We first compute the limit

of e−2λi,i+ktLai+1,i+k ∗ dBi(t) when t goes to infinity when either λi,i+k = λi or λi,i+k 6= λi.
We start with the case λi,i+k 6= λi (so, λi,i+k = λi+1,i+k). For all t ≥ 0, we have

e−2λi,i+ktLai+1,i+k ∗ dBi(t) = dB∗i (2λi,i+k)
∫ ∞

0
1[0,t]e

−2λi,i+k(t−u)Lai+1,i+k(t− u)d̂Bi(u)du.

According to Hk−1, we know that Lai+1,i+k(t) ∼ L̃i+1,i+k(a)e2λi,i+kt. We deduce with a
Lebesgue dominated convergence theorem that

lim
t→∞

e−2λi,i+ktLai+1,i+k ∗ dBi(t) = dB∗i (2λi,i+k)L̃i+1,i+k(a).

We apply the same method as above for the other terms of the source term. Hypothesis III.4
gives us that Ma

i,i+k ∼ eλi,i+ktM̃i,i+k(a) and Ma
i+1,i+k ∼ eλi,i+ktM̃i+1,i+k(a). Using Lebesgue

dominated convergence theorem, we obtain:

lim
t→∞

e−2λi,i+kt
[
2p(i)

2,0(Ma
i,i+k)2 + 2p(i)

1,1M
a
i,i+kM

a
i+1,i+k + 2p(i)

0,2(Ma
i+1,i+k)2

]
∗ dBi(t)

=
[
2p(i)

2,0(M̃i,i+k(a))2 + 2p(i)
1,1M̃i,i+k(a)M̃i+1,i+k(a) + 2p(i)

0,2(M̃i+1,i+k(a))2
]
dB∗i (2λi,i+k).

We then consider the case λi,i+k = λi > λi+1,i+k and start by computing the limit of
e−2λi,i+ktLai+1,i+k ∗ dBi(t).

e−2λi,i+ktLai+1,i+k∗dBi(t) = dB∗i (2λi,i+k)e−2(λi,i+k−λi+1,i+k)t
∫ ∞

0
1[0,t]e

−2λi+1,i+k(t−u)Lai+1,i+k(t−u)d̂Bi(u)du.

Using Hk−1 and Lebesgue dominated convergence theorem, we first obtain that

lim
t→∞

∫ ∞
0

1[0,t]e
−2λi+1,i+k(t−u)Lai+1,i+k(t− u)d̂Bi(u)du = dB∗i (2λi+1,i+k)L̃i+1,i+k(a) <∞,

hence,
lim
t→∞

e−2λi,i+ktLai+1,i+k ∗ dBi(t) = 0.

Then, Hypothesis III.4 give us that Ma
i,i+k ∼ eλi,i+ktM̃i,i+k(a) and

Ma
i+1,i+k ∼ eλi+1,i+ktM̃i+1,i+k(a). Using similar methods, we obtain:

lim
t→∞

e−2λi,i+kt
[
2p(i)

2,0(Mi,i+k)2 + 2p(i)
1,1Mi,i+kMi+1,i+k + 2p(i)

0,2(Mi+1,i+k)2
]
∗ dBi(t)

= 2p(i)
2,0(M̃i,i+k)2dB∗i (2λi,i+k).

We conclude by applying Lemma A.4 that Hk holds.

Variance

Definition A.3. We write vaj (t), the variance of Y (j,a)
t starting from a mother cell on the

first layer such that:

vaj (t) = E[(Y (j,a)
t )2|Z0 = δ1,0]− E[Y (j,a)

t |Z0 = δ1,0]2.

We study the asymptotic behavior of the variance vaj (t) when the first layer is the leading
one.
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Corollary A.1. Let a ≥ 0. Under the same hypotheses as in Hypothesis A.1 and supposing
that c = 1, we have

∀k ∈ J1, JK vaj (t) ∼ ṽj(a)e2λct, as t→∞

where

ṽj(a) = L̃1,j(a)− (mj(a))2 =

 2p(1)
2,0dB∗1(2λ1)

1− 2p(1)
S dB∗1(2λ1)

− 1

 (mj(a))2.

Proof. Let a ≥ 0. According to Hypothesis A.1 and using that c = 1, we have:

∀j ∈ J1, JK, La1,j(t) ∼ L̃1,j(a)e2λ1t, as t→∞ .

Using Hypothesis III.4 and A.1, we deduce for all j ∈ J1, JK:

ṽj(a) = L̃1,j(a)− (mj(a))2 =

 2p(1)
2,0dB∗1(2λ1)

1− 2p(1)
S dB∗1(2λ1)

− 1

 (mj(a))2.

a) Stochastic simulation procedures

Markov case
Considering a markovian case, we simulate the process Zt solution of the SDE (III.4) with
the Gillespie algorithm. We use the package StochSS [169].
We consider that for each layer j ∈ J1, 3K, p(j)

1,1 = 0. Hence, p(j)
2,0 = p

(j)
S and p(j)

0,2 = 1 − p(j)
S .

Considering a system with 4 layers, our system is ruled by the 7-th reactions below:

R1 : N1 → N1 +N1 with rate b1p(1)
S ,

R2 : N1 → N2 +N2 with rate b1(1− p(1)
S ),

R3 : N2 → N2 +N2 with rate b2p(2)
S ,

R4 : N2 → N3 +N3 with rate b2(1− p(2)
S ),

R5 : N3 → N3 +N3 with rate b3p(3)
S ,

R6 : N3 → N4 +N4 with rate b3(1− p(3)
S ),

R7 : N4 → N4 +N4 with rate b4.

General case
We simulate our process using the algorithm 3, on a predefine time horizon Tmax.

b) Deterministic simulation protocol

To solve numerically the problem (III.5), we design a dedicated finite volume scheme adapted
to the non-conservative form with proper boundary conditions. We define the time step ∆t
and the age step ∆a. The time discretization is defined by

t0 = 0, tn+1 = tn + ∆t, for n = 0, ..., Nt

where (Nt+1)∆t is the time horizon of the simulation. Similarly, Na is the number of cells1 in
the domain. The cells Ci are indexed by a rational number i (1

2 ,
3
2 , etc.) with i ∈ J1

2 , Na− 1
2K.

1The cell is here the standard name used for each elementary volume in the framework of finite volume
methods.
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Define a sequence S of cells of a given age and layer;
Simulate the time of division of each cell in S;
while t < Tmax do

Select the next cell m that will divide. lm is its layer index and alm is the age at
division.;
Randomly draw the layer of its daughters cell ld1 and ld2 according to the
probabilities p(lm)

2,0 , p(lm)
1,1 and p(lm)

2,0 .;
Randomly draw the next time of division of daughter cell d1 according to its layer
index ld1 . ;
Randomly draw the next time of division of daughter cell d2 according to its layer
index ld2 . ;
Add d1 and d2 into the sequence S. ;
t← t+ tm ;

end
Algorithm 3: Simulation stochastic process

The edges of each cell are located at ai− 1
2

= (i − 1
2)∆a and ai+ 1

2
= (i + 1

2)∆a (remark that
∆a = ai+ 1

2
− ai− 1

2
and a0 = 0). As age and time evolve at the same speed, we chose Na such

that tNt − a0
max < Na∆a where a0

max is the maximal age of the initial distribution.

Let j ∈ J1, JK. We define P jn,i as the mean value of the density ρ(j) in cell Ci at time tn:

P jn,i := 1
∆a

∫ a
i+ 1

2

a
i− 1

2

ρ(j)(tn, a) da .

We integrate the equation ∂tρ(j) + ∂aρ
(j) = −bjρ(j) with respect to age in cell Ci and obtain:

d

dt

∫ a
i+ 1

2

a
i− 1

2

ρ(j)(t, a) da = −ρ(j)(t, ai+ 1
2
) + ρ(j)(t, ai− 1

2
)−

∫ a
i+ 1

2

a
i− 1

2

bj(a)ρ(j)(t, a) da.

Then, we suppose that all bjs functions are regular enough so that we can approximate bj ,
for all j ∈ J1, JK on each cell Ci by their mean value b̄ij . We obtain:

d

dt

∫ a
i+ 1

2

a
i− 1

2

ρ(j)(t, a) da = −ρ(j)(t, ai+ 1
2
) + ρ(j)(t, ai− 1

2
)− b̄ij

∫ a
i+ 1

2

a
i− 1

2

ρ(j)(t, a) da.

We approximate the derivative in time with a finite difference scheme:

d

dt

∫ a
i+ 1

2

a
i− 1

2

ρ(j)(tn, a) da = 1
∆t

∫ a
i+ 1

2

a
i− 1

2

ρ(j)(tn+1, a)da−
∫ a

i+ 1
2

a
i− 1

2

ρ(j)(tn, a)da

+O(∆t)

and we deduce:
∆a
∆t

[
P jn+1,i − P

j
n,i

]
= −ρ(j)(t, ai+ 1

2
) + ρ(j)(t, ai− 1

2
)− b̄ij∆aP

j
n,i.

The edge terms ρ(j)(t, ai+ 1
2
) and ρ(j)(t, ai− 1

2
) correspond to the fluxes that cross the bound-

aries of cell Ci. When i = 1
2 , the boundary condition of equation (III.5) gives us the value of
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this term:

ρ(j)(tn, a0) = 2p(j)
S

∫ ∞
0

bj(a)ρ(j)(tn, a)da+ 2(1− p(j−1)
S )

∫ ∞
0

bj−1(a)ρ(j−1)(tn, a)da

= 2p(j)
S

∑
i

∫
Ci
bj(a)ρ(j)(tn, a)da+ 2(1− p(j−1)

S )
∑
i

∫
Ci
bj−1(a)ρ(j−1)(tn, a)da

= 2p(j)
S ∆t

∑
i

b̄iP
j
n,i + 2(1− p(j−1)

S )∆t
∑
i

b̄j−1
i P j−1

n,i .

When i 6= 1
2 , we approximate each term ρ(j)(tn, ai+ 1

2
) by

ρ(j)(tn, ai+ 1
2
) = P j

n,i+ 1
2

+O(∆a).

Hence, we obtain the following numerical scheme:

P jn+1,i =
[
1− b̄ji∆t−

∆t
∆x

]
P jn,i + ∆t

∆xP
j
n,i−1

P j
n+1, 12

=
[
1− b̄j1

2
∆t− ∆t

∆x

]
P j
n, 12

+ 2sj∆t
∑
i

b̄iP
j
n,i + 2(1− sj−1)∆t

∑
i

b̄j−1
i P j−1

n,i .

A.1.4 Construction of Figure III.5

In this part, we give some details about the construction of figure III.5. We simulate the
SDE (III.4) using the algorithm 3 and the PDE (III.5) using the algorithm described in the
subsection below (see b)) taking ∆a = 9.5× 10e− 3 and ∆t = 10e− 4.

We discretized the age according to a sequence of integers k ∈ J1, 50K. Let j ∈ J1, JK be
a layer index. The color bar associated with age k for the jth layer corresponds to the total
number of cells on the jth layer of age a ∈ [k, k + 1) renormalized by the total number of
cells:

<< Zt,1j,k≤a<k+1 >>

<< Zt,1 >>
.

The dashed black line with the age k for the jth layer corresponds to:

∫ k+1
k ρ(j)(t, a)da∑4

j=1
∫+∞

0 ρ(j)(t, a)da
∼

b k+1
∆x c−1∑
i=b k∆x c

P jn,i

4∑
j=1

∑
i

P jn,i

.

The color solid lines which represent the stable distribution ρ̂ and compute their value at
each age point k by ∫ k+1

k ρ̂(j)(a)da∑4
j=1

∫+∞
0 ρ̂(j)(a)da

.
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A.1.5 Parameter estimation procedure
Using the software D2D [91], we estimate the parameters of our model, using an additive
Gaussian noise statistical model (standard least squares likelihood). The standard deviation
and the initial number N of cells on the first layer are also estimated. To investigate the
practical identifiability, we compute the profile likelihood estimate (PLE) [138]. We observe
that all the parameters are practically identifiable except the probability of staying on the
second layer p(2)

S (see Figure A.1a). In contrast, most of the parameters are not practically
identifiable when we consider the total number of cells as the observable function (σ(t; p) =∑J
j=1M

(j)(t; p), Figure A.1b).

A.2 Additionnal materials of Chapter 5

A.2.1 Numerical scheme
Proof. Let j ∈ J1, JK. From the transport equation (V.5) and applying an Euler explicit
scheme for the differential operators ∂a and ∂t, we have, for all k > 0,

ρ̃(j)(tk+1, an)− ρ̃(j)(tk, an)
∆ + ρ̃(j)(tk, an+1)− ρ̃(j)(tk, an)

∆ +O(∆) = 0.

We deduce first that
ρ̃(j)(tk+1, an) ≈ ρ̃(j)(tk, an−1).

Then, applying the ρ̃(j) definition, we deduce the relation for U jk,n (V.6). We now tackle the
boundary condition. Taking advantage of the unidirectional motion, we proceed by recurrence
starting with layer 1:

ρ(1)(t, 0) = 2p(1)
S

∫ A1
max

A1
min

b1(a)ρ(1)(t, a) da.

Since b1(a)ρ(1)(t, a) = −∂tρ(1)(t, a)− ∂aρ(1)(t, a), we deduce that

ρ(1)(t, 0) = −2p(1)
S

∫ A1
max

A1
min

∂tρ
(1)(t, a) da+ 2p(1)

S ρ(1)(t, (A1
min)+)− 2p(1)

S ρ(1)(t, (A1
max)−).

Applying an Euler implicit scheme to the differential operator ∂t, we obtain

ρ(1)(tk+1, 0) = 2p(1)
S ρ(1)(tk+1, (A1

min)+)−2p(1)
S ρ(j)(tk+1, (A1

max)−)−2p(1)
S

∫ A1
max

A1
min

(
ρ(1)(tk+1, a)− ρ(1)(tk, a)

∆

)
da+O(∆).

(A.12)
We discretize the integral using a classical left rectangle rule where the integral

∫ ak+1
ak

g(a)da
is approximated by (ak+1 − ak)g(ak), and obtain the following formula:

∫ A1
max

A1
min

ρ(1)(tk+1, a)da = ∆
bA

1
max
∆ c−1∑

n=b
A1

min
∆ c

ρ(1)(tk+1, an) +O(∆2). (A.13)

Combining expressions (A.12) and (A.13), we deduce that

ρ(1)(tk+1, 0) = 2p(1)
S ρ(1)(tk+1, A

j
min)−2p(1)

S ρ(1)(tk+1, A
1
max)−2p(1)

S

bA
1
max
∆ c−1∑

n=b
A1

min
∆ c

(
ρ(1)(tk+1, an)− ρ(1)(tk, an)

)
+O(∆).
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(a) Practical Identifiability for σ(t; p) = (M (j)(t; p))j∈J1,JK

(b) Practical Identifiability for σ(t; p) =
∑J
j=1 M

(j)(t; p)

Fig. A.1 Practical Identifiability. Figure A.1a Profile likelihood estimate
(PLE) for each parameter in the set Pexp = {N, b1, α, p(1)

S , p
(2)
S , p

(3)
S } when the ob-

servation function is σ(t; p) = (M (j)(t; p))j∈J1,JK.The red dashed lines correspond
to the 95%-statistical threshold while the blue dashed lines correspond to the op-
timum value of the likelihood. Figure A.1b Parameter estimation results for
σ(t; p) =

∑J
j=1M

(j)(t; p). Left panel: Data fitting model with model (III.7).
The black diamonds represent the experimental data (total number of cells), the
solid line is the best fit solution of (III.7) and the dashed lines are drawn from the
estimated variance. Left panel: Profile likelihood estimates of each parameter in
the set Pexp.

We define U1
n,0 as follow

U1
k+1,0 = 2p(1)

S U1
k+1,b

A1
min
∆ c
− 2p(1)

S U1
k+1,bA

1
max
∆ c
− 2p(1)

S

bA
1
max
∆ c−1∑

n=b
A1

min
∆ c

(
U1
k+1,n − U1

k,n

)

= −2p(1)
S

bA
1
max
∆ c∑

n=b
A1

min
∆ c+1

U1
k+1,n + 2p(1)

S

bA
1
max
∆ c−1∑

n=b
A1

min
∆ c

U1
k,n.
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Using U1
k+1,n definition (V.6), we deduce that

U1
k+1,0 = 2p(1)

S

bA
1
max
∆ c−1∑

n=b
A1

min
∆ c

(
1− e−

∫ n∆
(n−1)∆ b1(s)ds

)
U1
n,k.

We now consider the case j > 1:

ρ(j)(t, 0) = 2(1− p(j−1)
S )

∫ Aj−1
max

Aj−1
min

bj−1(a)ρ(j−1)(t, a) da+ 2p(j)
S

∫ Ajmax

Ajmin

bj(a)ρ(j)(t, a) da.

We use the same approach to discretize the two integrals in the right-hand side of the equation
above and obtain expression (V.7).

A.2.2 Complement of proofs
Proof of Lemma V.1. Taking the derivative of expression (V.11), we obtain

m′1(t) = d

dt

∫ aψmax+t

aψmin+t
ρ(t, a)da+ d

dt

∫ min(0,Amin−aψmax+t)

0
ρ(t, a)da. (A.14)

Since the boundaries of the two right hand-side terms of expression (A.14) depend on time,
changes of variables are required to proceed to the derivation.
We first start by the term corresponding to the remaining cells. Applying the change of
variables s = a− aψmin − t, we deduce that, for all t ≥ 0,

d

dt

∫ aψmax+t

aψmin+t
ρ(t, a)da = d

dt

∫ aψmax−aψmin

0
ρ(t, s+ aψmin + t)ds

=
∫ aψmax−aψmin

0

[
∂tρ(t, s+ aψmin + t) + ∂aρ(t, s+ aψmin + t)

]
ds =

∫ aψmax+t

aψmin+t
∂tρ(t, a)da+[ρ(t, a)]a

ψ
max+t
aψmin+t

,

(A.15)

applying first the chain rule then the reverse change of variables a = s+ aψmin + t.

We turn now to the term representing the cells born since time t = Amin − aψmax. For all
t > Amin − aψmax, we apply the change of variables a = s(Amin − aψmax + t) and obtain,

∫ Amin−aψmax+t

0
ρ(t, a)da = (Amin − aψmax)

∫ 1

0
ρ(t, s(Amin − aψmax + t))ds.

Taking the derivative of this expression and using the chain rule, we obtain:

d

dt

∫ Amin−aψmax+t

0
ρ(t, a)da =

∫ 1

0
ρ(t, s(Amin − aψmax + t))ds

+ (Amin − aψmax + t)
∫ 1

0

[
∂tρ(t, s(Amin − aψmax + t)) + s∂aρ(t, s(Amin − aψmax + t))

]
ds.

(A.16)
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Using an integration by part, we first deduce that

(Amin−aψmax+t)
∫ 1

0
s∂aρ(t, s(Amin−aψmax+t))ds =

[
sρ(t, s(Amin − aψmax + t))

]1
0
−
∫ 1

0
ρ(t, s(Amin−aψmax+t))ds.

(A.17)
Combining expressions (A.16) and (A.17), we deduce that

d

dt

∫ Amin−aψmax+t

0
ρ(t, a)da = (Amin−aψmax+t)

∫ 1

0
∂tρ(t, s(Amin−aψmax+t))ds+ρ(t, Amin−aψmax+t)

=
∫ Amin−aψmax+t

0
∂tρ(t, a)da+ ρ(t, Amin − aψmax + t), (A.18)

using the reverse change of variables s = a

aψmax+t
.

Finally, combining expressions (A.15) and (A.18), we deduce, for all t > Amin − aψmax,

m′1(t) =
∫ aψmax+t

aψmin+t
∂tρ(t, a)da+[ρ(t, a)]a

ψ
max+t
aψmin+t

+
∫ Amin−aψmax+t

0
∂tρ(t, a)da+ρ(t, Amin−aψmax + t).

(A.19)
From PDEs (V.1), we can write that∫ aψmax+t

aψmin+t
∂tρ(t, a)da = −

∫ aψmax+t

aψmin+t
b(a)ρ(t, a)da− [ρ(t, a)]a

ψ
max+t
aψmin+t

(A.20)

and∫ Amin−aψmax+t

0
∂tρ(t, a)da = −

∫ Amin−aψmax+t

0
b(a)ρ(t, a)da− [ρ(t, a)]A

min−aψmax+t
0 . (A.21)

Using expressions (A.20) and (A.21), we deduce from expression (A.19), that for all t >
Amin − aψmax,

m′1(t) = −
∫ +∞

0
b(a)ρ(t, a)da+ ρ(t, 0) = 2pS − 1

2pS
ρ(t, 0).

We complete the proof by considering the case when t ∈ [0, Amin−aψmax]. In that case, no
division has occurred, hence for all t ∈ [0, Amin−aψmax], ρ(t, 0) =

∫min(0,Amin−aψmax+t)
0 ρ(t, a)da =

0. In the same way as previously, we obtain that for all t ∈ [0, Amin − aψmax],

m′1(t) = −
∫ aψmax+t

aψmin+t
b(a)ρ(t, a)da = 0 = 2pS − 1

2pS
ρ(t, 0),

since the intersection of the support of b, (Amin, Amax), and the interval [aψmin + t, aψmax + t] is
empty when t ∈ [0, Amin − aψmax]. This ends the proof.

A.2.3 Complementary illustrations of Algorithm
We observe that the numerical convergence rate is faster, in both the L∞ and L2 relative
error norms, in the case of a polynomial b function, as well as in the L2 norm in the case of
a bump function, compared to the other cases. The convergence pattern differs according to
the norm both in the bump and piecewise constant cases. A plateau is reached for relatively
high values of ∆ in the case of a bump function and L∞ norm.
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Fig. A.2 Complementary illustrations of Algorithm 2. We proceed in
the same way as in Figure V.3 using the bump function and for either differ-
ent initial conditions (Figure A.2a): ψ(a) = 1.5 exp(−a)1[0.5,1.75](a)(blue line);
ψ(a) = 1[0.25,1.5](a)(green line) and ψ(a) = a(a− 2)1[0.,2.](a)(red line), with pS = 1,
or different pS values (Figure A.2b): pS = 0.35 (blue line), pS = 0.75 (green line)
or pS = 1 (red line), with ψ(a) = 1[0.5,2](a).
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Fig. A.3 Sensitivity of the reconstruction algorithm to the observation
sampling rate. We simulate m1 using the numerical scheme for the same division
rates function, initial condition and pS parameter as in Figure V.3 with ∆ = 5×10−3.
We thus obtain two vectors of size K: the discretized mK

1 = (mk
1)k=0,...,K−1 vector

and its associated time vector tK = (tk)k=0,...,K−1. For ∆ chosen in the grid of
increasing step sizes ∆ ∈ {0.005, 0.01, 0.05, 0.1, 0.5},we extract from vectors mK

1 and
tK the sub-vectors mK∆

1 and tK∆ such that tK∆
1 = k∆. Then, we apply Algorithm

2 and deduce the estimated b∆ function from mK∆
1 (Figure A.3a). Figure A.3b:

we compute the relative L2 and L∞ errors (dashed and solid lines, respectively) by
comparing each estimated b∆ functions to the original b functions computed with
the finest step size. Pink lines: polynomial b function, orange lines: uniform b
function, green lines: bump b function. Each colored star represents the relative
error obtained for a given ∆ value.
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