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Summary
In order to coordinate their actions and accomplish physiological functions, cells communicate to each
others using extra-cellular signals, such as long-range hormonal signals. Ath the level of individual
cells, these signals induce biological responses by triggering complex signaling cascades containing a
series of molecules and biochemical reactions. One signaling cascade is typically activated by the
interaction between an extracellular signal and its cognate receptor. The receptors of interest in
this project are gonadotrophins receptors, that belong to the family of G-protein coupled receptors
(GPCRs). Understanding cell signalling events and their spatiotemporal dynamics is a key step to
develop pharmacological approaches. In fact, GPCRs are a wide range of targets for drugs because
they control many biological systems as reproduction, embryonic development or neuronal system. For
many hormones, including the reproductive hormones, GPCRs induce a physiological response at the
plasma membrane but also within intracellular vesicles. The number of vesicles in the cell, their size
but also their specific characteristics have dynamic evolution that shapes the signaling cascade. The
spatiality and intensity of response have a physiological interest and suggest to take into account the
entire intracellular response for pharmacological drug development. A key aspect of the spatial struc-
ture of the signaling cascade is the receptors trafficking, going back and forth from plasma membrane
to dynamic vesicles. Modelling routing of these receptors could improve knowledge on this system and
provide mechanistic interpretation to in-vitro biological experiences. Overall, the aim of my internship
is to characterize the spatial and temporal dynamics of GPCR-induced signaling pathways.

Signaling cascades are translated in a mathematical model using the framework of chemical reac-
tion networks. This formalism consists of species, reactions and kinetic rates to obtain an oriented
graph on linear combination of species called complexes. The principle of this theory is based on this
abstraction. Vesicles and plasma membrane can be considered as fixed compartments and then the
traffic of receptors can be translated as reaction, understood as spatial transition from one compart-
ment to another. Such approach, called compartmental or structured model, considers a globalization
of quantities in the different types of compartments. This method permits to use the theory of chemical
reaction networks to study the model behavior. During my internship, different models were written
with two or three compartments including parameters of interest : recycling, internalization, dissocia-
tion and association rates. To obtain analytically models, various biologically motivated mathematical
assumptions were used. Finally, thanks to interpretive expressions, the influence of parameters was
studied and reveals that the signaling response dynamics might be influenced in distinct opposite
ways by the receptor trafficking according to the ligand-receptor interaction parameters. Individual-
based models have a greater modeling flexibility and allow to represent more complex phenomenon.
The model I developed during my internship is hybrid : a mixture of stochasticity and determinism.
Events of receptor trafficking and vesicles’ size are random, but the biochemical reactions, including
ligand-receptor interaction, are still assumed deterministic. In a certain way, these assumptions are
closer to biological reality. This model leads to study Piecewise Deterministic Markov Processes and
to write an algorithm in order to simulate the individual-based model. The biggest advantage of this
approach is to be able to simulate the number of vesicles according to time.

The first perspective of my work is to calibrate models I developed in order to compare these models
with biological data thanks to a statistical method of parameter estimation. The comparison of the
deterministic and stochastic approach is not straightforward as several mechanisms can not be directly
compared. Still, one possibility would be to use moment closure method in order to obtain a reduce
set of ODEs, easier to analize and to compare to ODEs coming from reaction networks. Finally, many
model extensions can be considered, including new molecular players that interact with the receptor
trafficking machinery, or considering continuous space diffusion of effectors molecules that provide a
coupling of signaling cascade at the scale of the whole cell.
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Presentation of the laboratory

My intership took place at the Institut National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement (INRAE) and more precisely in the Val de Loire Center, in Tours, in the team BI-
Ology of GPCR Signaling Systems (BIOS) under the supervision of the Doctor Romain Yvinec. The
team is part of a unit called Reproductive and Behavior unit. The academic supervisor is the Doctor
Marcela Szopos.

BIOS is an interdisciplinary team composed of biologists, computer scientists and mathematicians
managed by Romain Yvinec and Lucie Pellissier. The principle researches axes of the team revolve
around the G protein coupled receptors (GPCRs), a family of receptors which generates many different
cellular responses. The physiological response depends on the nature of the ligand. The team is fo-
cused on hormones involved in reproduction and social interactions. One part of the team study more
preciously the biological responses induced by hormones which have a key role in social interactions.
They try to identify social markers but also to improve sociability. Applications of this research range
from the study of the autism spectrum disorder to animal welfare. The other part of the team works
on reproduction and tries to develop non-hormonal control of reproduction (both for human and ani-
mals) but also to fight against infertility. The last part of the team uses multi-scale modelling of these
different systems to predict biological responses which depend on space, time or intensity. Particularly,
they develop mathematical models to understand the signaling response induced by GPCRs thanks
deterministic, stochastic and hybrid approaches but also with artificial intelligence.

My internship concerned the project carried by the Doctor Frédéric Jean-Alphonse, on compartmental-
ized signalling. The principle question of this project is to determine how the routing of receptors and
the signaling involved by the receptor from the intracellular compartments participate in the cellular
and physiological response. This project is also in collaboration with the MUSCA team (MUltiSCAle
population dynamics for physiological systems) based in INRIA Saclay (Institut National de Recherche
en Informatique et Automatique). Biologists try to develop fluorescent sensors to follow in real time the
signaling from the different compartments. In collaboration with biologists, some mathematical tools
are developed (biochemical reaction networks, coagulation-fragmentation processes, individual-based
model) to take into account compartmentalization.
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I Biological introduction

I.1 Biological notions

G protein-coupled receptors (GPCRs) are a family of receptors implied in lots of biological mecha-
nisms. These transmembrane proteins play a key role in the cell signaling in response of some ligands
like hormones, ions or neurotransmitters. GPCRs are a wide range of targets for drugs because they
control many biological systems as reproduction, embryonic development or neuronal system. Cells
communicate to each others using extra-cellular signals, such as long-range hormonal signals. The
ligand binding to its cognate receptor leads to a signaling cascade and a biological response. Many
types of GPCRs exist which don’t activate the same pathway. They are called GPCRs because after
their activation, they recruit a heterotrimeric protein : the protein G composed of three parts α, β, γ.
Then, after this interaction, this protein will be dissociated in two sub-units : the Gα and the combined
Gβ,γ which will induce different signalling cascades.

Within the G protein-coupled receptors, one type of them specifically recognizes reproductive hormones
called gonadotrophins hormones. The endocrine system composed of the hypothalamic-pituitary axis
triggers especially the production of gonadotrophins hormones. Among them the luteinizing hor-
mone (LH) and the follicle stimulating hormone (FSH) have a crucial role in the reproduction. These
hormones are secreted in the pituitary gland and control the secretion of sexual steroid hormones
(testosterone, estrogens...). For example, in males, FSH regulates the spermatogenesis in Sertoli cells,
whereas LH takes action on Leydig cells to induce the synthesis of testosterone. For females, LH and
FSH act in different phases of the ovulation. Understanding how work these hormones can permit to
find some infertility treatments or non-hormonal contraception.

Gonadotrophin receptors are mostly combined to the Gαs sub-unit and will activate the adenylate
cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signalling pathway.
cAMP is produced by AC and activates PKA. Then, the production of cAMP is regulated by the
phosphodiesterase (PDE). In fact, the key role of PDE is to degrade cAMP. During a long period, the
biological community thought that the trigger of this signalling cascade only happened at the plasma
membrane. Then, receptors were internalized and desensitized. Since few years ago, the vision of the
GPCR signalling evolved. In fact, some biological studies showed that the cAMP production is also
possible in organelles inside the cell [3] and more preciously in compartments called endosomes which
have a key role in the intracellular transport of the molecules. Moreover, the reaction happens also in
the Golgi apparatus or nuclear membrane. This property suggests an important spatial component of
signalling and the production of cAMP in different intracellular membrane seems essential to ensure a
correct physiological response [8].

For gonadotrophin receptors, it has been recently shown that there were rapidly internalized at first
in little endosomes called Very Early Endosomes (VEE). They can also be internalized in Early Endo-
somes (EE) which are more used for transport to lysosome whereas VEE seems to play a direct role
in the signalling inside the cell. Then, receptors can also be recycled back to the plasma membrane.
However, to date, many uncertainties remain about the system of internalization or recycling of these
receptors (Fig.1). Is there a recycling of EE and VEE? Is VEE can become an EE ? Moreover, VEE
are distinct from EE by their size: VEE are smaller than EE [1]. The size characterization of the VEE
and EE for these hormones leads to a mathematical model where compartments are represented by a
volume and a certain quantity of molecules [2]. cAMP molecules might be produced in each compart-
ment. Nevertheless, cAMP response seems to be separated in two time scales: a short acute response
at the plasma membrane and a prolonged response which appeared after a few minutes of internaliza-
tion in endosome [7]. Biologists can estimate the cAMP quantity thanks to BRET (Biology Resonance
Emission Transfer) measurements. The ratio of BRET is proportional to the quantity of cAMP in
the cell. This time dependence is typically summarized into dose response (using the area under the
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Figure 1: Biological scheme about the routing of GPCRs. This figure represents the mechanism
of the internalization and recycling of the GPCRs activated by LH in the cell during a cellular response.
The dotted lines represent the unknowns. The scheme was made thanks to Biorender.

curve, or response at a given final time)... The dose response represents the cAMP quantity in function
of different doses of ligand in log scale (Appendix A-Fig.16). The biological response in function of
time can have different profiles detailed in [5] and more precisely four different time course shapes
are typically observed: the straight line is when signaling is unregulated; the association exponential
curve is the most common observed when there are second messenger molecules; the rise-and-fall to
baseline curve is when responses decline (desensitization) and the rise-and-fall to steady-state curve
is observed when there are events of internalization and when the signaling is persistent inside the
cell. The authors made parallel with biological conditions in function of different effectors molecules, if
there is degradation or not but also if there is persistent signalling by internalized receptors. The no-
tion of interaction between a ligand and its cognate receptor (Fig.3) was studied from a mathematical
point of view at least since 1983 by Black and Leff [33]. Then, lots of mathematical models emerged
to improve knowledge on this system [5], [12] and some models were developed in consideration with
internalization of complex of ligand-receptors [5], [10], [25].

I.2 Modelling strategy

In view of its biological relevance, it seemed interesting to explore the traffic mechanism of these recep-
tors and precisely to review the influence of routing parameters: internalization or recycling. Math-
ematical tools can be helpful to develop different models and then to propose alternative hypotheses
to be confronted with biology. As a first approach, we consider the different types of endosomes and
the plasma membrane as fixed compartments, among which molecules (e.g. receptors, ligand, complex
ligand-receptors) can transition from one to the other: it is called routing. The model consider then
that each compartment produces cAMP proportionally to the quantity of complex ligand-receptor
that is present in it at a rate k` and degrades cAMP at a rate k´ (Fig.2). The initial quantities, the
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Figure 2: cAMP modelling. cAMP is produced in each compartment i at a rate k`
i and degraded

at a rate k´
i .

variables and the parameters of the model are introduced in the following table (Table.1).

Terms Unit Description

Initial quantities
R0 mol The total initial quantity of receptors.
L0 mol The total initial quantity of ligand.
Variables
Ri mol The amount of receptors in compartment i.
Li mol The amount of ligand in compartment i.
LRi mol The amount of complex ligand-receptors in compartment i.
cAMPi mol The amount of cAMP in compartment i.
Parameters
kioff s´1 The speed of dissociation of the complex ligand-receptors in compartment i.

kion mol´1.s´1 The speed of association of the complex ligand-receptors in compartment i.

Ki
D “

ki
off

ki
on

mol The constant of dissociation of the complex ligand-receptors in compartment i.

kxik s´1 The rate of molecules x from compartment i to compartment k
kideg s´1 The rate of the degradation of the ligand in compartment i.

k`
i s´1 The rate of production of cAMP in compartment i.

k´
i s´1 The rate of degradation of cAMP in compartment i.

Table 1: Table of the initial quantities, the variables and the parameters. x represents lr, r
or l and cAMPi is proportional to the intensity of the biological response.

The main question of the project is to study the effect of the internalization and recycling on the pro-
duction of cAMP in the cell from mathematical models. This work is applied on LH receptors but can
be extended to other ligands and receptors. Compartmentalization could influence cellular signaling.
Mathematics can be used to model transitions between each compartment and to understand the traffic
influence. In [4], authors delineated how endocytocis regulates the signaling of the tyrosine kinase re-
ceptor (RTK). At first, a deterministic approach is developed by ordinary differential equations derived
from a chemical reaction network, inspired by [10] or [25]. This formalism is said structured because
the population of molecules is distributed into different structures (or compartments). These models
allow to write a function of cAMP at steady state and to make an analogy with the dose response
obtained in biology from approximately 30 minutes of reaction. This function depends on L0, the
initial quantity of ligand injected. It can predict the behaviour of the system in function of variations
of the different parameters but also the maximal cAMP quantity obtained. A current limitation of
the reaction network approach is that it doesn’t take into account individual behaviours. A second
approach, individual-based model, is presented. In fact, each compartment has its own life and so its
own properties (cAMP production, lifetime, initial quantities,...). To take into account singularities
of each compartment, a stochastic approach is proposed thanks to Piecewise Deterministic Markov
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Processes and is consisted of two embedded models: deterministic and stochastic. The stochastic part
models the compartment dynamics (creation of new compartments with given molecules quantities,
recycling, etc.), while the deterministic models the reaction networks at play within each compartment.

In order to interpret the different models, some assumptions are advanced to simplify modelling.
These hypotheses can be justified from a biological point of view.

1. Time Scale Separation. This hypothesis considers that reactions haven’t the same speed.
Some reactions are faster than others. In this problem, the association and dissociation of the
LR complexes are faster than the internalization and recycling speed. The LR dissociation-
association is thus taken at equilibrium.

2. Ligand in excess at plasma membrane. The quantity of ligand is considered in excess at
plasma membrane compared to the quantity of receptors. This parameter is the only one that
biologists can influence. They have no direct measurements of the quantity of receptors to the
plasma membrane. To be sure to activate a reaction, they suppose that the administered doses
of ligand are bigger that the quantity of receptors.

3. Ligand in excess in all compartments. The quantity of ligand is considered in excess in
all compartments compared to the quantity of receptors. However, the quantity of ligand in
the intracellular compartments is unknown and the hypothesis that it is in excess compared to
receptors is to discuss. In fact, only the ligand-receptor complex is internalized, so the amount
of ligand internalized may be limited by the amount of receptors.

4. The initial quantity of receptors is very small. This hypothesis considers that the initial
quantity of receptors is very small and so tends to 0. It can be coherent if we considered that
there are more ligands than receptors.

5. The steps of recycling and dissociation of the complex LR are confused. In fact, some
biologists think that there is no dissociation of the complex but direct recycling of receptors to
the plasma membrane and simultaneously degradation of the ligand.

Finally, this section introduced the biological problem and the strategy adopted. In section 2, we
present mathematical preliminaries and more preciously two theories : the Chemical Reaction Network
(CRN) and the Piecewise Deterministic Markov Processes (PDMP) and then in section 3, we exhibit
the biological modelling by introducing different models.

II Mathematical preliminaries

II.1 Chemical Reaction Network theory (CRN)

This topic was first studied by Feinberg, Horn, and Jackson in the 1970s and is today a great advance
to study directly biochemical networks. This theory is very used in applied mathematics and more
especially for reaction’s modelling like in Biology or Chemistry. This formalism uses a list of species
(the biological entities), a list of reactions (that modifies the abundances of species) and a set of kinetic
rates, deterministic or stochastic, that quantifies the speed at which each reaction proceeds. The set
of reactions constitutes an oriented graph on linear combination of species (called complexes). This
abstraction is the starting point of the chemical reaction network theory, which aims to characterize the
dynamical behavior of each underlying dynamical systems, based on (mostly) the network topology.
This theory gives some tools and theorems to ask directly about existence and uniqueness of steady-
states or their stability without any calculation but just with the CRN’s analysis. The presentation of
this theory is inspired from the book of Martin Feinberg [13].
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II.1.1 Chemical reaction network’s introduction

Definition 1. A chemical specie is a chemical substance that is involved in a reaction, and can be
a product, a reactant or both. E : tE1, ..., Edu is the finite set of species with d, the total number of
species.

Definition 2. Complexes are all vectors yj P C where C “ ty1, ..., ynu with n the total number of
complexes. We identify yj P C as a vector in Rd, with

yj “

¨

˝

yj1
.

yjd

˛

‚ , yji “ stoichiometry of Ei in yj

Often, we denote the source vector by y and the product vector by y
1

with y and y
1

belong to C.
We identify tey1 , ..., eynu as the canonical orthonormal basis of Rn.

Definition 3. A reaction Rj is given by Rj “ y Ñ y
1

where y and y
1

are complexes in C defined as

above. The set of all reactions are given by R “ ty Ñ y
1

: y, y
1

P Cu, and |R| “ r.

Definition 4. The triple tE , C,Ru is then called a chemical reaction network (CRN).

We begin with an example that we will use on the next pages (Fig.3-A). In this example, there are

L ` R LR
kon

koff

R LR
Lkon

koff

A B

Figure 3: Dissociation-association models. Classic models about interaction between ligand and
receptors when the ligand is considered as a constant (B) or not (A).

two reactions (r “ 2), three species (d “ 3) and two complexes (n “ 2). We can write the reactants

and products as column vectors, y1 “

¨

˝

1
1
0

˛

‚and y2 “

¨

˝

0
0
1

˛

‚.

II.1.2 Deterministic mass-action

In a deterministic system, the concentration of each species is a function of time. We note ciptq the
concentration of species Ei per unit of volume. The concentration vector is finally c “ pc1, ..., cdq. The
mass action law states that the speed of the reaction is proportional to the product of the concentration
of the different reactants.

Definition 5. Kinetic rates are κ “ tκyÑy1 , y Ñ y1 P Ru.

Definition 6. The deterministic system associated to the CRN tE , C,R, κu for the concentration of
species c, is given by an initial condition xp0q “ x0 P Rd

` and

dc

dt
“ fpcptqq “

ÿ

yÑy1PR

κyÑy1cypy1 ´ yq, with cy “
ź

sPE
cys
s . (1)

In the previous example (Fig.3-A), the system obtained is :
$

’

&

’

%

dL
dt “ koffLRptq ´ konLptqRptq,
dR
dt “ koffLRptq ´ konLptqRptq,
dLR
dt “ konLptqRptq ´ koffLRptq.
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Remark 1. The CRN’s theory allows in some cases to analyze the long time behavior of an ODE
regardless of its parameter values, and gives some nice properties to the model. In order to prove
the existence and uniqueness of a solution, the deterministic theory can be used and in particular the
Cauchy-Lipschitz theory. Chemical reaction networks contain polynomial functions which are locally
Lipschitz. Then, thanks to Cauchy-Lispschitz, there exists a unique maximal solution. Global in time
solution requires additionnal assumptions, to avoid degenerate cases like the CRN: X ` X Ñ 3X.

Definition 7. (Complex composition matrix)
Y : Rn Ñ Rd is the linear application defined by Y peyq “ y, @y P C. Y can be represented as a Mdˆn

matrix, with:
Yij “ yji , 1 ď i ď d, 1 ď j ď n. (2)

Definition 8. (Complex graph matrix)
Aκ : Rn Ñ Rn is defined by:

Aκpcq “
ÿ

yÑy1PR
κyÑy1cypey1 ´ eyq. (3)

Aκ can be represented as a Mnˆn matrix, with:

Aij
κ “

"

κjÑi if j ‰ i,
´

ř

l‰j κjÑl if j “ i.
(4)

Definition 9. (Propensity vector)
The propensity vector Φ : Rd Ñ Rn is defined by Φpcq “

ř

yPC c
yey.

This vector is a vector of Rn with Φpcq “

¨

˝

cy
1

.
cy

n

˛

‚.

Finally, the system, fpcq “ dc
dt can be re-written as,

fpcq “ Y ˝ Aκ ˝ ϕpcq. (5)

In particular, these definitions can be applied for the previous model (Fig.3-A) with, Y “

¨

˝

1 0
1 0
0 1

˛

‚,

Aκ “

ˆ

´kon koff
kon ´koff

˙

, Φpcq “

ˆ

LptqRptq
LRptq

˙

, and finally thanks to (5),

Y ˝ Aκ ˝ Φpcq “

$

’

&

’

%

dL
dt “ koffLRptq ´ konLptqRptq,
dR
dt “ koffLRptq ´ konLptqRptq,
dLR
dt “ konLptqRptq ´ koffLRptq.

Definition 10. (Reaction Stoichiometry matrix)
The Reaction Stoichiometry matrix Γ : Rr Ñ Rd is the linear application defined as a Mdˆr matrix,
with:

Γij “ y1
i ´ yi, 1 ď i ď d, 1 ď j ď r, where y Ñ y1 P R is the jth reaction. (6)

Definition 11. (Complex Incidence matrix)
I : Rr Ñ Rn is the linear application defined as a Mnˆr matrix, where Ij “ ek ´ ei, 1 ď j ď r and
yi Ñ yk P R is the jth reaction.

Moreover, we define kjpcq “ κjc
y where j is the number of the reaction.

With these definitions, we can verify that Γ “ Y I and that the system, fpcq “ dc
dt can be re-written

as,
fpcq “ Γ ˝ kpcptqq “ Y ˝ I ˝ kpcptqq. (7)

11



For the example (Fig.3-A), these elements are : Γ “

¨

˝

´1 1
´1 1
1 ´1

˛

‚, I “

ˆ

´1 1
1 ´1

˙

,

kpcptqq “

ˆ

konLptqRptq
koffLRptq

˙

and, Y ˝ I ˝ kpcptqq “

$

’

&

’

%

dL
dt “ koffLRptq ´ konLptqRptq,
dR
dt “ koffLRptq ´ konLptqRptq,
dLR
dt “ konLptqRptq ´ koffLRptq.

Remark 2. If we have a graph with rates κ, there is an unique possible ODE system with respect this
graph. However, if we have an ODE system, there are in general several graphs which are possible.
There is no uniqueness of the graph.

II.1.3 General properties of network

Definition 12. A fixed point (resp. positive fixed point) is c P Rd
ě0 (resp. c P Rd

ą0) such that fpcq “ 0.

Definition 13. The stoichiometric subspace is S “ vectty1 ´ y|y Ñ y1 P Ru and s “ dimpSq.

Definition 14. (Stoichiometric compatibility class) @x P Rd, Sx “ px ` Sq X Rd
`.

Remark 3. A parallel could be made with the notion of compatibility class and the number of conser-
vation laws. In all our models, the initial quantity of receptors is conserved. This means that, variables
are bounded and the solution of the chemical reaction networks is global (Fig.3).

Remark 4. Moreover, conservation laws imply global solution. Finally, for all Cauchy Problem pre-
sented during the report with conservation laws, there exists a unique global solution.

Figure 4: Different stoichiometric compatibility classes. The initial conditions 1 and 2 are in
the same stoichiometric compatibility class whereas the initial condition 3 is in an other stoichiometric
compatibility class.

Let us introduce some relations between complexes.
• We say y, y1 are directly linked, denoted by y Ø y1, if either y Ñ y1 P R or y1 Ñ y P R.
• We say that y ultimately reacts to y1 if either, y “ y1 or if it exists y1, ...ym P C such that y “ y1 Ñ

y2 Ñ ... Ñ ym “ y1. This is denoted by y ñ y1.

Definition 15. (Linkage Class)
The linkage relation is the equivalence relation on C, denoted by y „ y1.
y „ y1 if either y “ y1 or if it exists y1, ..., ym, such that y “ y1 Ø y2 Ø ... Ø ym “ y1. The linkage
classes are denoted by L1, ..., Ll and l is the number of linkage classes.

Definition 16. (Strong Linkage Class)
The strong linkage relation is the equivalence relation on C, denoted by y « y1.
y « y1 is if both y ñ y1 and y1 ñ y. The strong linkage classes are denoted by L̄1, ..., L̄p and p is the
number of strong linkage classes.
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Remark 5. Every linkage class is an union of strong linkage class. Thus, p ě l.

Definition 17. (Terminal Strong Linkage Class)
The strong linkage class L̄ is terminal if no complex in L̄ reacts to a complex outside L̄. The Terminal
Strong Linkage classes are denoted by T1, ..., Tt and t is the number of Terminal Strong Linkage classes.

A B ` C D E

2F

A ` B E

Figure 5: CRN’s example.

In the previous example (Fig.5), there are two linkage classes (l “ 2): tA,B ` C,D,E, 2F u and
tA ` B,Eu, four strong linkage classes (p “ 4) : tA,B ` Cu, tDu, tE, 2F u and tA ` B,Eu, and two
terminal linkage classes (t “ 2) : tE, 2F u and tA ` B,Eu.

Definition 18. (Reversibility)
pE , C,Rq is reversible if for any y Ñ y1 P R, then y Ñ y1 P R.
pE , C,Rq is weakly reversible if the strong linkage classes coincide with the linkage classes, or equiva-
lently, if y ñ y1 then y1 ñ y.

Definition 19. (Complex balanced equilibrium and complex balanced)
A complex balanced equilibrium is a concentration c P Rd

ě0 such that for all z P C,
ÿ

y:yÑzPR

κyÑzc
y “

ÿ

y1:zÑy1PR

κzÑy1cz.

Stated differently, this is when inflow rate is equal to the outflow rate for any complex z.
A chemical reaction network is said complex balanced if there exists a positive complex balanced equi-
librium.

Definition 20. (Deficiency)
The deficiency of a network is defined as δ “ n´ l´ s with n: the number of complexes, l: the number
of linkage classes and s: the dimension of the stoichiometric subspace.

We can take the following CRN on example (Fig.6). This CRN is weakly-reversible. Moreover,
there is just one linkage class (l “ 1), the dimension of the stoichiometric subspace is s “ 2, and there
are three species (n “ 3). Finally, the deficiency is δ “ 0. The deficiency of the CRN presented in
(Fig.3) is 0 whereas the deficiency of the CRN (Fig.5) isn’t 0.

II.1.4 Deficiency 0 theorem

In 1979, Feinberg proved the Deficiency Zero Theorem [20]. This theorem is used to directly prove from
a Chemical Reaction Network that the mass actions systems have a unique stationary point within
each positive stoichiometric compatibility class and this equilibrium is locally asymptotically stable.
The unique equilibrium of deficiency 0 CRN has been proved globally stable in the case of a single
linkage class [17]. Since then, many more generalized theorem have been made to expand the power of
this theorem and to discover new properties on the CRN. However, many questions remain such that
the existence of a global attractor for CRN with arbitrary number of linkage classes.

Theorem 1. (Feinberg, 1979)
Let tE , C,Ru be a chemical reaction network with deterministic mass-action kinetics. Suppose it’s a
weakly reversible system which has zero deficiency, then within each positive stoichiometric compati-
bility class, there is precisely one equilibrium which is locally asymptotically stable.
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Figure 6: Traffic model. A simplify model which represents the traffic between three compartments.

Idea of the proof : Feinberg separated the proof in two part in five lectures. At first, he supposed
that the differential equations for the mass action system admit a positive equilibrium (not necessarily
one in each positive stoichiometric compatibility class) and proved the stability of the stationary point.
In a second time, when the system is weakly reversible network of deficiency 0, he proved that the
differential equations admit a positive equilibrium. All the demonstration is based on the kernel of
the different matrix presented above and more preciously about the complex graph matrix, Aκ, in (3).
One of the principle result used in the proof is the following corollary (Lecture 4).

Corollary 1. Let tE , C,Ru be a reaction network of deficiency zero, and let κ, the kinetic rates. If Y
is the stoichiometric map for the network and Aκ is defined as in (3),

KerpY Aκq “ KerpAκq. (8)

Demonstration . • If x P KerpAκq,

x P KerpAκq ðñ Aκx “ 0

ðñ Y Aκx “ 0

ðñ x P KerpY Aκq.

It’s obviously that KerpAκq is contained in KerpY Aκq.
• If x P KerpY Aκq,

x P KerpY Aκq ðñ Y Aκx “ 0

ðñ Aκx P KerpY q.

Let ∆ “ tey1 ´ ey P RC : y „ y1u. Since Aκ takes values in spanp∆q, we have the inclusion,

Aκx P KerpY q X spanp∆q. (9)

Moreover, such δ “ dimpKerpY q X spanp∆qq, if the network has zero deficiency,

dimpKerpY q X spanp∆qq “ 0.

Finally, Aκx “ 0 and x P kerpAκq.

Remark 6. If a system admits one stationary point on a stoichiometric compatibility class, it converges
for different initial conditions. However these initial conditions must be on the same stoichiometric
compatibility class (Fig.4).

14



From this first theorem, many people tried to modify and improve these results. I will just mention
one of them which will be used for the analysis of the future models. Anderson in [17] proved that the
stationary point is a global attractor when there is just one linkage class.

Theorem 2. (Global Attractor [17])
Let tE , C,R, κu denote a complex-balanced system with one linkage class. Then, any complex-balanced
equilibrium contained in the interior of a positive compatibility class is a global attractor of the interior
of that positive class.

The proof of the global stability has not yet published in the general case even if the conjecture
persists.

II.1.5 Time scale separation

In a system, all variables haven’t the same speed. This theory allows to separate fast variables and
slow variables [18],[19]. The system can be written in two ways :

#

x1 “ dx
dt “ ϵfpx, y, ϵq

y1 “
dy
dt “ gpx, y, ϵq

with ϵ Ñ 0

and with the following variables changes, τ “
t

ϵ
,

#

x1 “ dx
dτ “ fpx, y, ϵq

y1 “
dy
dτ “ 1

ϵ gpx, y, ϵq
with ϵ Ñ 0.

x are the slow variables and y are the fast variables. In fact, when ϵ Ñ 0, gpx, y, 0q “ 0. The fast
variables reach very rapidly their stationary state. We have two cases if L is considered as a constant
or not. We introduce some functions when the quantity of ligand is constant or not to take account of
the time scale separation in the basic model (Fig.3).
• The quantity of ligand is not constant.
If we consider kon, koff „ 1

ϵ and let ϵ Ñ 0, we obtain, at the limit that @t P R`,

konLptqRptq “ koffLRptq, (10)
$

’

&

’

%

fpLtot, Rtot,KDq “ LRptq “ 1
2 pLtotptq ` Rtotptq ` KD ´

a

pRtotptq ´ Ltotptq ` KDq2 ` 4KDLtotptqq,

gpLtot, Rtot,KDq “ Lptq “ 1
2 pLtotptq ´ Rtotptq ´ KD `

a

pRtotptq ´ Ltotptq ` KDq2 ` 4KDLtotptqq,

hpLtot, Rtot,KDq “ Rptq “ 1
2 pRtotptq ´ Ltotptq ´ KD `

a

pRtotptq ´ Ltotptq ` KDq2 ` 4KDLtotptqq.

(11)
• The quantity of ligand is constant.
By inspiring an article of Hoare [12], one can consider L “ L0, with L0 P R` the initial quantity of
ligand. If we consider kon, koff „ 1

ϵ and let ϵ Ñ 0, we obtain, at the limit that @t P R`, L0 P R`,

konL0Rptq “ koffLRptq, (12)
#

lpL0, Rtot,KDq “ LRptq “ L0

KD`L0
Rtotptq,

ppL0, Rtot,KDq “ Rptq “ KD

KD`L0
Rtotptq.

(13)

II.1.6 General kinetics

Kinetics rates are not necessarily constant rates. They can have multiple forms, but they have to
verify some properties [16], [21]. The first article, [16], defines different classes of kinetics : general
kinetics, weak general kinetics and positive general kinetics. We will define more precisely what are
general kinetics.
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Definition 21. Given a CRN, let Ij,l be the set of indices of species occuring on the left of reaction
j and Ij,r be the set of indices of species occuring on the right of reaction j. f verifies the general
kinetics if f is defined and C1 on Rn

ě0 for reaction j which is irreversible then:

1. fj ě 0 with fj “ 0 if and only if xi “ 0 for some i P Ij,l.

2.
dfj
dxi

ě 0 for each i P Ij,l. If xi ą 0 for all i P Ij,l, then dfj
dxi

ą 0 for each i P Ij,l.

It can be summarized very roughly as ”reactions proceed if and only if all reactants are present,
reaction rates are non decreasing with reaction concentration, and reaction rates increase strictly with
reactant concentration if and only if all reactants are present.” Banaji [21] provides general conditions
under which, when kinetics are general kinetics, that the CRN admits an unique stationary point which
is asymptotically stable on each stoichiometric compatibility class (theorem 2.1 in [21]). Moreover, f ,
g, h, l and p defined above in (11) and (13) can be used as general kinetics rates (see Appendix-B).

II.2 Piecewise Deterministic Markov Processes (PDMP)

II.2.1 Poisson process

Definition 22. A point process on R` is the data of a strictly increasing sequence of random variables
pTnqně1 of positive reals and unbounded.

Definition 23. Let pTnqně1 be a point process, we call the counting function associated with pTnqně1,
the function t P R` ÞÑ Nt defined by Nt :“ suptn ě 0, Tn ď tu.

Definition 24. (Poisson process)
We call Poisson process the given of a sequence of random variables ω ÞÑ pTnpωqně1q such that for
any ω P Ω, pTnpωqně1q is a point process for which the counting function ω ÞÑ pNtpωqtě0q satisfies the
two following conditions:

1. Hypothesis of independent increments: the numbers of events that occur in disjoint time
intervals are independent.
Let 0 ă s ă t, Nt ´ Ns is independent of Fs where Fs “ σpNr, 0 ď r ď sq.

2. Stationarity hypothesis: the distribution of the number of events occurring in a given time
interval depends only on the length of the time interval.
If s ă t, Nt ´ Ns has the same law of Nt´s.

Proposition 1. If pTnq is a Poisson process, there is a constant λ ą 0 such that for s ě 0, Ns follows
a Poisson distribution of parameter λs. λ is the process intensity and is the expected number of jumps
per unit of time.

II.2.2 Non-homogeneous Poisson process

Definition 25. A non-homogeneous Poisson process (Nptq : t ě 0) is a Poisson process whose intensity
is a function of time, λ “ λptq where t P R`.

Proposition 2. The number of events Nt is then distributed according to a Poisson distribution of
parameter τptq “

şt

0
λpuqdu.

Lewis in [22] proposed in 1979 a simple and relatively efficient method for simulating one-dimensional
and two-dimensional non-homogeneous Poisson process. This method is based on the accept/reject
principle. To simulate a non-homogeneous Poisson Process (Nptq : t ě 0) of intensity λ, he relied on
the next theorem.
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Theorem 3. Consider a non-homogeneous Poisson process (N˚ptq : t ě 0) of intensity λ˚ptq. On a
fixed interval r0, t0s, the number of points, N˚pt0q has a Poisson distribution with parameter τ˚pt0q ´

τ˚p0q. Let X˚
1 , .., X

˚
N˚pt0q

be the points of the process. If for t P r0, t0s, λptq ď λ˚ptq. For i “ 1, ..., n,

delete the point X˚
i with probability 1 ´

λpX˚
i q

λ˚pX˚
i q

; then the remaining points form a non-homogeneous

Poisson Process (Nptq : t ě 0) with rate function λptq on r0, t0s.

Algorithm 1 One-dimensional nonhomogeneous Poisson process.

1. Generate points in the nonhomogeneous Poisson process (N˚ptq : t ě 0). Let n˚ be the number
of points generated. If n˚ “ 0, exit because there are no points in the process (Nptq : t ě 0).

2. Denote the (ordered) points by X˚
1 , .., X

˚
n˚ . Set i “ 1 and k “ 0.

3. Generate Ui, uniformly distributed between 0 and 1. If, Ui ď
λpX˚

i q

λ˚pX˚
i q

, k Ð k ` 1 and Xk “ X˚
i .

4. Set i Ð i ` 1. If i ď n˚, go to 3.

5. When n “ k, return X1, ..., Xn and n.

II.2.3 Piecewise Deterministic Markov Processes

Piecewise Deterministic Markov Processes (PDMP) are used to simulate systems which include deter-
ministic continuous dynamical systems perturbed by random discrete events in time. The perturbation
can be a discontinuous jump or a change in the continuous motion. We can see this process like a
stochastic hybrid model. It was literally introduced by Davis in 1984 [14]. Moreover in 1992, Lasota
et al, [15], was one of the first to use this type of process to explore biological problems and more
preciously the cell division. To introduce the piecewise deterministic Markov processes, one can rely
on [28].
More preciously, let K be a countable set, d : K Ñ N and for each k P K, Pk an open subset of Rdpkq.
The state-space E is:

E “
ď

kPK

Pk “ tz “ px, kq; k P K,x P Pku .

We can also define E which denote the following class of measurables sets in E:

E “ t
ď

kPK

Ak;Ak P Pku, where Pk denotes the Borel set of Pk.

The PDMP is determined by the following objects:

• Vector fields pHk, k P Kq such that for all k P K, all x0Pk, there is a unique global solution in
Pk of

#

dXt

dt “ HkpXtq,

X0 “ x0.
(14)

• A measurable function λ : E Ñ R`, such that for all z “ pk, x0q P E, the function t ÞÑ λpXtq is
locally integrable along the solution of equation (14).

• A transition measure Q : E ˆE Ñ r0, 1s, such that QpA; zq is a measurable function of z P E for
each fixed A P E , and is a probability measure on pE, Eq for each fixed z P E.

More preciously, the system (Hk, λ, Q) is a piecewise deterministic process which depends on k. At
the jump time, the next value of the ODE is given by the transitional measure Q defined above.
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III Biological modelling

To characterize the spatial and temporal dynamics of GPCR-induced signaling pathways, we model
routing of these receptors to improve knowledge on this system and provide mechanistic interpretation
to in-vitro biological experiences. To model the effect of internalization and recycling on the production
of cAMP (Fig.1), a first part with only two types of compartments is advanced in section 3.1. The
type ”endosomes” can correspond to a global term that correspond to both EE end VEE. However,
to separate EE and VEE, some three compartment models are proposed in section 3.2. For the two
compartment model, a deterministic approach and stochastic approach are developed whereas for the
three compartment models, we only focus on the deterministic approach. To study the influence of
parameters, the goal for all models is to write cAMP in function of the initial quantity of ligand.
This parameter is the only one for which biologists have access. An analogy is possible between the
equilibrium obtained inside biological experience after 30 minutes and the steady states obtained by
a mathematical model. On future models for two or three compartments, the cAMP function is
always increasing function of L0. In the different models that we developed, we omitted the variable
of cAMP . In fact, cAMP is proportional to the quantity of ligand-receptor complexes LR and we can
focus on the quantity of L,R and LR to determinate independently the amount of cAMP . Moreover,
the cAMP amount is convergent in the model describing the production and degradation of cAMP
function of LR (Fig.2) (Proposition.3). The exact solution is:

cAMP ptq “ k`

ż t

0

LRpsqe´k´
pt´sqds.

Proposition 3. In the model describing the production and degradation of cAMP function of LR
(Fig.2), the cAMP amount is convergent:

lim
tÑ`8

cAMP ptq “ cAMP˚, with cAMP˚ P R`.

Demonstration . Thanks to mass conservation, R0 “ LRptq ` Rptq and L0 “ LRptq ` Lptq.

9LR “ ´koffLRptq ` konLptqRptq

“ ´koffLRptq ` konpL0 ´ LRptqqpR0 ´ LRptqq

“ konL0R0 ´ LRptqpkoff ` konpL0 ` R0qq ` konLR
2ptq

:“ α ´ βLR ` γLR2

:“ F pLRq.

Such LR, the amount of complex of ligand-receptors and LR˚ P R`, a constant.

pLR ´ LR˚qpF pLRq ´ F pLR˚qq “ pLR ´ LR˚qp´βpLR ´ LR˚q ` γpLR2 ´ pLR˚q2qq

“ ´βpLR ´ LR˚q2 ` γpLR2 ´ pLR˚q2qpLR ´ LR˚q

“ ´βpLR ´ LR˚q2 ` γpLR ´ LR˚q2pLR ` LR˚q

“ pLR ´ LR˚q2p´β ` γpLR ` LR˚qq

ď pLR ´ LR˚q2p´β ` 2γR0 ^ L0q

ď p´koff ´ kon|R0 ´ L0|qpLR ´ LR˚q2.

Finally,

|F pLRq ´ F pLR˚q| ď p´koff ´ kon|R0 ´ L0|q|LR ´ LR˚|

ðñ| 9LR ´ 9LR˚| ď p´koff ´ kon|R0 ´ L0|q|LR ´ LR˚|.
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Thanks to the Grönwall lemma, @t P R`,

|LRptq ´ LR˚| ď |LRp0q ´ LR˚|e´Kt, with K “ koff ` kon|R0 ´ L0| ą 0

and lim
tÑ`8

LRptq “ LR˚. Finally, cAMP admits a finite limit:

cAMP ptq “ k`

ż t

0

LRpsqe´k´
pt´sqds

“ k`

ż t

0

pLRpsq ´ LR˚ ` LR˚qe´k´
pt´sqds

“ k`

ż t

0

pLRpsq ´ LR˚qe´k´
pt´sqds ` k`LR˚

ż t

0

e´k´
pt´sqds

ď k`

ż t

0

|LRp0q ´ LR˚|e´Ks´k´
pt´sqds ` k`LR˚

ż t

0

e´k´
pt´sqds

ď k`|LRp0q ´ LR˚|e´k´t

ż t

0

e´pK´k´
qsds ` k`LR˚

ż t

0

e´k´
pt´sqds

ď k`|LRp0q ´ LR˚|e´k´t 1

K ´ k´

´

1 ´ e´pK´k´
qt

¯

`
k`

k´
LR˚

´

1 ´ e´k´t
¯

ď k`|LRp0q ´ LR˚|
1

K ´ k´

´

e´k´t ´ e´Kt
¯

`
k`

k´
LR˚

´

1 ´ e´k´t
¯

.

To conclude,

lim
tÑ`8

cAMP ptq “
k`LR˚

k´
“ cAMP˚.

The cAMP convergence isn’t explicit when networks are more complicated and take account into
internalization or recycling of quantities.

III.1 Two compartment models

In this part, we will consider a simplified mathematical model of two types of compartments where 1
corresponds to plasma membrane and 2 is for endosomes (EE and VEE) in the hope to understand
the role of the traffic in the cell signaling. The complex LR is internalized and then there is an event
of dissociation/association of the complex. Only receptors are recycled and ligands in endosomes are
degraded. It will be possible to interpret the function of cAMP dose response with various parameters
and to find an optimum in the different cases.

III.1.1 Deterministic approach

This section will focus on the two compartment model and will study how and why going from model
A to E (Fig.7) but also the results for each sub-model.
The first model (Fig.7-A) isn’t weakly-reversible. The CRN’s theory cannot help, but this network is
also written by:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

dL1

dt “ ´k1onL1R1 ` k1offLR1,
dR1

dt “ ´k1onL1R1 ` k1offLR1 ` kr21R2,
dLR1

dt “ k1onL1R1 ´ k1offLR1 ´ klr12LR1,
dL2

dt “ ´k2onL2R2 ` k2offLR2 ´ k2degL2,
dR2

dt “ ´k2onL2R2 ` k2offLR2 ´ kr21R2,
dLR2

dt “ k2onL2R2 ´ k2offLR2 ` klr12LR1,

xp0q “ pL0, R0, 0, 0, 0, 0q.
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Figure 7: Two compartment models. 1 is for plasma membrane and 2, for endosome. (A) is the
full model, in (B) the ligand is constant, in (C) the initial quantity of receptors is very small, in (D)
the steps of recycling and dissociation of the complex LR are confused and finally in (E), the reactions
of dissociation/association at the plasma membrane are very fast : it’s the hypothesis of time scale
separation.

We can show here by direct calculus that the unique stationary point is here degenerated because
L1 “ LR1 “ LR2 “ R2 “ 0, R1 “ R0. Because of this result, we made the first hypothesis that the
ligand is considered in excess compared to the quantity of receptors. It allows to consider the ligand
as a constant and to obtain the second model (Fig.7-B). As we can show by algebraic manipulations,
a unique non-degenerate steady state exists and can be calculated explicitly:

$

’

’

&

’

’

%

R2 “
k2
degK

2
D

2 p´C `

b

C2 ` 4R0kr21k2degK
2
Dq,

LR1 “ kr21

klr12
R2,

LR2 “ kr21

k2
off

R2 ` kr21

k2
degK

2
D
R2

2,

(15)

with C “
K1

D

k1
offL0

p1`
k1
off

klr12
q ` 1

klr12
` 1

kr21
` 1

k2
off

. Finally, like cAMP is produced in each compartment

(Fig.2), one obtains:

cAMP pL0, R0q “
k`
1

k´
1

kr21
klr12

R2 `
k`
2

k´
2

p
kr21
k2off

R2 `
kr21

k2degK
2
D

R2
2q,

and we show that this function is strictly increasing function of L0. Unfortunately, it seems complicated
to analyze the relations between species in this steady point.
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If we consider that R0 is very small, after a Taylor series approximation at order two, we can obtain
different relations between species:

LR1 “
k2off
klr12

LR2,

LR2 “
kr21
k2off

R2,

LR1 “
L0

K1
D

R1.

but above all,

LR1 “
R0L0

L0

“

1 ` klr12p 1
kr21

` 1
k2
off

q
‰

` K1
Dp

klr12

k1
off

` 1q
. (16)

This model corresponds to the steady state of the model (Fig.7-C). An analogy is possible with the
result found in [10]. This last network has some others properties because it’s a weakly reversible
network and the deficiency is 0 (n “ 4, s “ 3 and l “ 1). In fact, thanks to deficiency 0 theorem,
there is a unique stationary point in each compatibility class and this stationary point is asymptotically
stable (Theorem.1). In addition, this stationary point is globally stable (Theorem.2). However, it could
be possible to study the matrix like this model is linear. Nevertheless, to obtain the global convergence
with the study of the matrix, we must calculate the eigenvalues which might be complicated. Then,
one can obtain an expressive formula to cAMP dose response which is strictly increasing in function
of L0:

cAMP pL0, R0q “ p
k`
1

k´
1

`
k`
2

k´
2

klr12
k2off

q
L0R0

L0

“

1 ` klr12p 1
kr21

` 1
k2
off

q
‰

` K1
Dp1 `

klr12

k1
off

q
. (17)

Remark 7. Equations (16) and (17) are interpretive expressions which have to be compared with:

LR1 “
L0R0

L0 ` K1
D

and, cAMP “
k`
1

k´
1

L0R0

L0 ` K1
D

. (18)

These expressions are obtained when there is just one compartment and more preciously just reactions
defined in the model dissociation/association (Fig.3).

The understanding of the influence of various parameters like internalization, recycling or the
dissociation of the complex in the endosome (respectively klr12, kr21 and k2off ) is possible with (17).
The existence of optimum values is demonstrated to obtain the maximum quantity of cAMP and noted
cAMP˚. We will note f “ cAMP pL0, R0q. Moreover, if the ratio of the production and degradation

are equal (
k`
2

k´
2

“
k`
1

k´
1

) at endosome and at the plasma membrane, the rates will be noted k`

k´ and

conditions are a bit simplified.

A) Internalization

• If,
k`
2

k´
2

L0`K1
D

k2
off

ą
k`
1

k´
1

p L0

k2
off

`
K1

D

k1
off

q and if, kr21 ą
k`
1

k´
1

L0

k
`
2

k
´
2

L0`K1
D

k2
off

´
k

`
1

k
´
1

p
L0

k2
off

`
K1

D
k1
off

q

“ Srec, f is

strictly increasing function of klr21 and the maximum is when klr12 ÝÑ `8,

cAMP˚ “
k`
2

k´
2

L0R0

k2off

1

L0p 1
kr21

` 1
k2
off

q `
K1

D

k1
off

,

• else, f is strictly decreasing function of klr21 and the maximum is when klr12 ÝÑ 0,

cAMP˚ “
k`
1

k´
1

L0R0

K1
D ` L0

.
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• If rates of cAMP are equal, if k2off ă k1off , and kr21 ą L0

K1
Dp 1

k2
off

´ 1

k1
off

q
“ Srec, f is strictly

increasing function of klr21 and the maximum value is when klr12 ÝÑ `8,

cAMP˚ “
k`

k´

L0R0

k2off

1

L0p 1
kr21

` 1
k2
off

q `
K1

D

k1
off

, and if not,

f is strictly decreasing function of klr21 and the maximum value is when klr12 ÝÑ 0,

cAMP˚ “
k`

k´

L0R0

K1
D ` L0

.

B) Recycling
The function is strictly increasing function of kr21 and the maximum is when kr21 ÝÑ `8,

cAMP˚ “ p
k`
1

k´
1

`
k`
2

k´
2

klr12
k2off

q
L0R0

L0

“

1 ` klr12p 1
k2
off

q
‰

` K1
Dp1 `

klr12

k1
off

q
.

C) Dissociation of complex LR in the endosome

• If
k`
1

k´
1

ą
k`
2

k´
2

L0`K1
Dp

klr12
k1
off

`1q

L0
, and if kr21 ą

k`
2

k´
2

L0klr12

k
`
1

k
´
1

L0´
k

`
2

k
´
2

pL0`K1
Dp

klr12
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off

`1qq

“ Srec, f is strictly

increasing function of k2off and the maximum value is when k2off ÝÑ `8,

cAMP˚ “
k`
1

k´
1

L0R0

L0p1 `
klr12

kr21
q ` K1

Dp
klr12

k1
off

` 1q
,

• else, f is strictly decreasing function of k2off and the maximum value is when k2off ÝÑ 0,

cAMP˚ “
k`
2

k´
2

R0.

• In addition, if rates of cAMP are equal, f is strictly decreasing function of k2off and the

maximum value is k2off ÝÑ 0,

cAMP˚ “
k`

k´
R0.

D) A fix ratio between recycling and internalization rates (kr21 “ Kklr12, with K P R`

and we note, x :“ klr12 “ kr21

K )

• If
k`
1

k´
1

ą
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2

k´
2

L0`K1
D

L0`
K1

D
k2
off

k1
off

, and if K ą L0
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k`
2
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2

1
k

`
1

k
´
1

p
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`
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D
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off
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`
2

k
´
2

L0`K1
D

k2
off
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decreasing function of x and the maximum value is when x Ñ 0,

cAMP˚ “
k`
1

k´
1

L0R0

L0p1 ` 1
K q ` K1

D

.

• else, f is strictly increasing function of x and the maximum value is when x Ñ `8,

cAMP˚ “
k`
2

k´
2

L0R0

L0 `
K1

Dk2
off

k1
off

.
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• If the rates of cAMP are equal, if k1off ă k2off , and if K ą L0
K1

D
k1
off

´
K1

D
k2
off

“ SK , f is strictly

decreasing in function of x and the maximum value is x ÝÑ 0,

cAMP˚ “
k`

k´

L0R0

L0p1 ` 1
K q ` K1

D

,

and if not, f is strictly increasing function of x the maximum value is x ÝÑ `8,

cAMP˚ “
k`

k´

L0R0

L0 `
K1

Dk2
off

k1
off

.

Figure 8: Influence of parameters when production and degradation rates are equal in
both compartments to focus on the effect of the others parameters. (A): k2off ă k1off
and kr21 ą Srec, f is strictly increasing function klr12; (B): k

2
off ą k1off and f is strictly decreasing

function klr12; (C): f is strictly increasing function kr21; (D): f is strictly increasing function k2off ; (E):

k1off ą k2off , f is strictly increasing function klr12 with kr21 “ Kklr12; (F): k
1
off ă k2off and K ą SK ,

f is strictly decreasing function x with x “ klr12 “ kr21

K .

Remark 8. These optimums could permit to show that according to the different parameters the
extreme value of parameters isn’t the same to obtain the maximal cAMP quantity. For example, in
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the first case (A) when rates of cAMP are equal, if k2off ă k1off , in function of the value of recycling,
the maximum cAMP obtained is different and not for the same extreme value of internalization. In
one case, the maximum is obtained when internalization rate is going to 0 whereas in the second case,
the maximum is reached when internalization rate is increasing. If the complex LR1 is more stable
than LR2 (k1off ă k2off ), the maximum of cAMP is reached with no internalization (and LR2 is zero
and LR1 maximized). However, if LR2 is more stable, and if recycling is fast enough, the maximum
of cAMP is reached with infinite rate of internalization (and LR1 is zero and LR2 maximized). It
is interesting to note the asymmetry of the conditions that come from the asymmetry of the reaction
network at plasma membrane and at the endosome. Interestingly, the cAMP is always higher with
higher recycling rate, as this tends to minimize the non cAMP-productive state R2.

Biologists think that the dissociation in the endosomes (k2off ) is slower than the dissociation in

the plasma membrane (k1off ). If biologists might be able to have some idea of the value of recycling
parameters, this result could be used to determine if it’s better to increase internalization or decrease
internalization to achieve the maximal quantity of cAMP. In addition, available biological experiences
(Appendix-A.Fig.16) seems to be in favor of behavior (A).

Moreover, when we consider that the dissociation of the complex and recycling are confused, one
can obtain the model (Fig.7-D). In this model, the parameter k2off represents both recycling and
dissociation. The system can be written as:

ˆ

9LR1

9LR2

˙

“

ˆ

´pk1off ` klr12 ` k1onL0q ´k1onL0

klr12 ´k2off

˙ ˆ

LR1

LR2

˙

`

ˆ

k1onL0R0

0

˙

,

with A “

ˆ

´pk1off ` klr12 ` k1onL0q ´k1onL0

klr12 ´k2off

˙

. Finally, detpAq ą 0 and trpAq ă 0, the real part of

both eigenvalues are negatives. In addition, eigenvalues aren’t real only if:

k2off “ k1off ` klr12 ` k1onL0. (19)

However, it seems to be a degenerative point because it’s the only values of parameters for which the
eigenvalues are complex. It appears when incoming flows are equal to outgoing flows.
The stationary point is:

$

’

&

’

%

LR1 “ R0L0

L0p1`
klr12
k2
off

q`K1
Dp

klr12
k1
off

`1q
,

LR2 “
klr12

k2
off

LR1,

and the cAMP function is:

cAMP pL0, R0q “ p
k`
1

k´
1

`
k`
2

k´
2

klr12
k2off

q
R0L0

L0p1 `
klr12

k2
off

q ` K1
Dp

klr12

k1
off

` 1q
. (20)

The last model (Fig.7-E) is obtained thanks to the hypothesis of time scale separation. Like there is
mass conservation, the explicit solution for LR2 is:

LR2ptq “
klr12
k2off

L0R0

L0p
klr12

k2
off

` 1q ` K1
D

p1 ´ e
´tpklr12

L0R0
KD1`L0

`k2
off q

q.

As LR1 “
k2
off

klr12
LR2, the explicit solution for cAMP is:

cAMP pL0, R0, tq “ p
k`
1

k´
1

`
k`
2

k´
2

klr12
k2off

q
L0R0

K1
D ` L0p1 `

klr12

k2
off

q
p1 ´ e

´tpklr12
L0R0

KD1`L0
`k2

off q
q. (21)

From different hypotheses, the initial model was simplified to permit its analysis. All assumptions
start from a biological idea and like models were not fitted with biological data, it’s impossible to say
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if a model is better than another. In fact, from a biological point of view, it’s not necessarily the full
model (Fig.7-A) which has the best interest. One interest of the reduction of the models is to decrease
the number of parameters of the system.

III.1.2 Stochastic approach

A current limitation of the reaction network approach is that it doesn’t take into account individual
behaviours of intracellular vesicles, in particular their dynamic and intermittent behaviour, nor the fact
that each individual vesicle induce a compartmentalized pool of molecules, separate from the bulk. In
fact, individual-based models have a greater modeling flexibility and allow to represent more complex
phenomenon, but the price to pay is the lack of tools to study analytically their behavior. Only a few
models were interested in the dynamic of endosomes with a individual based model. Foret et al [30]
looked about this evolution using a PDE based approach: they consider that endosomes have their
own characteristics in time, size or chemical properties with a partial differential equations approach.
Endosomes might undergo different events such creation, degradation, coagulation and fragmentation.
However, this method is expensive to simulate when there are lots of structured variables (e.g. different
molecules species or chemical properties). However, if there are lots of individuals which belong to the
same type, a stochastic formalism is not the most appropriate. We expect numerical simulation to be
faster than PDEs approach, especially when the number of endosomes (individuals) stay moderate.
There’s a compromise to find between the number of individuals and the number of the types of the
species. In order to take into account the dynamic of each compartment, a stochastic approach has
been considered thanks to a piecewise deterministic approach [31], [34] because the number of vesicles
is not too large. The estimation of the cAMP production in each vesicle is possible (Fig.9) but also
the number of endosomes at each time. The PDMP model (Appendix C-Fig.17) for two types of
compartments is considered in which different events are possible : a creation of a new endosome, with
the internalization of a certain quantity of LR from plasma membrane or the recycling of an existing
endosome to the plasma membrane. To keep the mass conservation, the quantity of receptors and
complex is recycled to the plasma membrane. To sum up, there are two states possible with different
chemical reactions possible: the plasma membrane and the endosomes. However, there is a certain
number of endosome which evolved in function on time and this evolution depends on the events
number of recycling or internalization. In fact, when there is an internalization’s event the number of
endosomes increases whereas if an endosome is recycled, it decreases.
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Figure 9: cAMP quantity for each endosome. One advantage of the stochastic model is to follow
the individual dynamic of compartments. Each endosome produces its own cAMP quantity.
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In order to simulate this model, an algorithm based on the next reaction method is used. In this
method, each event has its own clock for its next occurence. For example, each endosome has its own
time of recycling.The algorithm moves forward in time up to the smallest time of potential event. It-
eratively, the algorithm tests whether or not the smallest time actually corresponds to an event, using
the reject sampling that we detailed in the following algorithm (Algorithm.2). In function of this test,
the status changes and a new potential occurence time is assigned for this event. The occurence time
follows an exponential random law whose parameter is given by the upper bound of the rate function
(Algorithm.2). This algorithm permits to determine the number of endosomes in function of time but
also the cAMP total quantity (Fig.10). The creation of a new compartment depends of the quantity
of ligand-receptor complex at the plasma membrane whereas the recycling of an endosome depends
on the quantity of free receptors in the endosome. To boost the creation of a new compartment, one
possibility is to raise the association rate. The quantity of complex will increase, and therefore, so will
the number of internalization. To boost the recycling of an endosome, one possibility is to raise the
dissociation rate and to decrease the association rate. In fact, in this case, the quantity of receptors is
increasing and more endosomes are recycled. Moreover, the rates of internalization and recycling can
also play a role: they influence at the next time of jump of each event. If they increase, the interval
between two times of jumps is smaller. For example, if the recycling rate is decreasing, there are no
more endosomes which are recycled.

Figure 10: PDMP simulations.This figure is an average of 100 realisations of the algorithm. The
dotted lines represent the standard deviation. The parameters of production and degradation of
cAMP are equal at the plasma membrane and in endosomes. (A) represents the cAMP quantity total
according to time and (B) represents the number of endosomes.

Remark 9. From the modeling point of view, the choice of internalization and recycling functions is
a work in progress. As a first choice, functions are in this case linear according to the quantity of
complex LR1 and an internalization rate for the internalization event and according to the quantity of
receptors in endosome R2 and a recycling rate for the recycling event. However, others functions could
be chosen as saturation functions, functions which take into account more molecules,... Moreover, this
system considers there is a law of conservation for the total number of receptors and that when there
is recycling, the time of events depends only on receptors but receptors and complex are recycled to the
plasma membrane. The modelling of this system has multiple possibilities.

III.2 Three compartment models

To model more precisely, the biological system of the internalization and recycling of receptors (Fig.1),
taking into account three types of compartments is necessary. In the future models, the plasma mem-
brane is noted 1, Very Early Endosome is 2 and Early Endosome is 3. As the exact process of the
mechanism of recycling or internalization of receptors is subject to many unknown, different models
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Algorithm 2 Next reaction Method for the stochastic model with two types of compartments
(Appendix-C.Fig.17).

• L0 and R0: initial quantities of ligand and receptors;

• x0
1 “ pL0, R0, 0, 0q;

• finter: the function associated to internalization with finter “ kinterLR1;

• Hinter with @x P pR`q4, finterpxq ď Hinter;

• frec: the function associated to recycling with frec “ krecR2;

• Hrec with @x P pR`q4, frecpxq ď Hrec;

• ODEi: the ODE’s associated to the plasma membrane (i “ 1) and the endosome (i “ 2);

• S1: the time of the internalization and Sl
2: the time of the recycling of the endosomes l;

• tmax: the final time of the reaction;

• t1: the initial time of the reaction;

• k: the number of compartments at each time;

• j: the label attributed to each compartment (j “ 0 is for plasma membrane).

k “ 0;
t2 “ 0;
S1 „ EpHinterq and Sl

2 „ EpHrecq for all endosomes present at initial time.

while t2 ă tmax do:

• Z Ð t1 ` vectpS1, S2q, t2 Ð minpZq, i Ð indexrminpZqs;

• x1ptq “ ODE1px0
1, t1, t2q and xl

2ptq “ ODE2px0,l
2 , t1, t2q with l all endosomes present be-

tween rt1, t2s;

• x0
1 Ð x1pt2q and x0,l

2 Ð xl
2pt2q with l all endosomes present between rt1, t2s;

• Generate U, uniformly distributed between 0 and 1;

• t1 Ð t2

if i “ 0 then:

if U ď
finterpx0

1q

Hinter
then:

• k Ð k ` 1, j Ð j ` 1;

• α „ N p0, 0.1q and α P r0, 1s;

• Creation of a new endosome j of initial conditions : x0,j
2 “ p0, 0, αLR1, 0q and x0

1 “ x0
1´x0,j

2 ;

• S1 „ EpHinterq and Sj
2 „ EpHrecq;

else S1 „ EpHinterq;

end if

else i “ j with j the label of the endosome which can be recycled;

if U ď
frecpx0,j

2 q

Hrec
then:

• k Ð k ´ 1;

• x0
1rRs Ð x0

1rRs ` x0,j
2 rRs ` x0,j

2 rLRs;

• Delete x0,j
2 and t2;

else Sj
2 „ EpHrecq

end if

end if

end while.
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with three types of compartments will be presented. The models differ especially in function of which
quantities are recycled. In fact, it is above all this property for which biologists are unsure. We develop
five types of models. Moreover, for each model, we consider two cases: when the ligand concentration
varies according to time (Case 1 : Fig.3-A) and when the ligand is considered in excess and is approx-
imated by a constant in each compartment (Case 2: Fig.3-B) or not. We finally consider, for certain
models, a further reduction when we separate the faster (ligand-receptor association-dissociation) and
slower (traffic) reactions to obtain an interpretive CRN. We will call the reduced model: the quasi-
steady state model, which is common terminology in the reaction network field. Let us introduce the

L1 ` R1 LR1

LR2

LR3

A

L1 ` R1

B

DC

L2 ` R2

L3 ` R3

LR1

LR2

LR3

L1 ` R1

L2 ` R2

L3 ` R3

LR1

LR2

LR3

L1 ` R1

L2 ` R2

L3 ` R3

LR1

LR2

LR3

LR recycled no dissociation model LR recycled model

R recycled model LR-L-R recycled model

E

L1 ` R1

R2

R3

LR1

LR2

LR3

R recycled no association model

Figure 11: Three compartment models. LR recycled no dissociation model (A), LR recycled model
(B), R recycled model (C), LR-L-R recycled model (D) and R recycled no association model (E).

different models (Fig.11) which consider all that cAMP is produced and degraded as presented above
(Fig.2).

• LR recycled no dissociation model (A): There is no dissociation of the LR complexes in
intracellular compartments. The quantity of ligands and receptors in these compartments are
insignificant compared to the quantity at the membrane and just LR complexes are recycled.

• LR recycled model (B): There is dissociation of the LR complexes in all compartments and
the LR complexes are recycled.
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• R recycled model (C): This model is maybe the most realistic from a biological perspective.
The LR complexes are internalized, dissociated in ligand and receptors and only receptors are
recycled. The reaction of association is possible.

• LR-L-R recycled model (D): All species are recycled and can go from a compartment to
another, except the ligand and receptors from plasma membrane to intracellular compartments.

• R recycled no association model (E): This model doesn’t consider about the ligand in the
compartments as suppose some biologists. The LR complexes are internalized, dissociated and
these receptors are recycled.

III.2.1 Traffic model

A simplified model (Fig.6) with three compartments C1, C2 and C3 is looking to illustrate the routing
of compartments. This network can be written as:

$

’

&

’

%

dC1

dt “ ´pk12 ` k13qC1 ` k21C2 ` k31C3,
dC2

dt “ k12C1 ´ pk21 ` k23qC2,
dC3

dt “ k13C1 ` k23C2 ´ k31C3.

The stationary point and cAMP function are:

$

’

&

’

%

C1 “ C0

1`a`b ,

C2 “ aC0

1`a`b ,

C3 “ bC0

1`a`b ,

and, cAMP pC0q “ p
k`
1

k´
1

` a
k`
2

k´
2

` b
k`
3

k´
3

q
C0

1 ` a ` b
, (22)

with C0 the initial condition (C0 “ C1p0q`C2p0q`C3p0q), a “ k12

k21`k23
and b “ 1

k31
p k23k12

k21`k23
`k13q. This

function is strictly increasing function of C0. The key parameters a and b can informally understood
as ”a “

input in 2
output of 2” and ”b “

input in 3 by 2 + input in 3 by 1
output of 3 ”, which sum up the traffic of compartments.

We will find these two parameters in many following models at the equilibrium.

III.2.2 LR recycled no dissociation model

This section is in reference to (Fig.11-A). There is no dissociation of the LR complexes in intracellular
compartments and LR complexes are recycled.
• Case 1: At first, one obtains different properties.
-CRN study: Thanks to the deficiency 0 theorem [20], each compatibility class admits one asymptoti-
cally locally stable. Moreover, the stationary point is globally stable because there is just one linkage
class [17].
-Stationary point and cAMP function:
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’

%

LR1 “ p
pL0´R0qp1`a`bq´KD`

?
∆

p1`a`bq
qp R0

pL0´R0qp1`a`bq`KD`
?
∆

q,

LR2 “ aLR1,

LR3 “ bLR1,

and, cAMP pL0, R0q “ p
k`
1

k´
1

` a
k`
2

k´
2

` b
k`
3

k´
3

q
R0

p1 ` a ` bq

pL0 ´ R0qp1 ` a ` bq ´ KD `
?
∆

pL0 ´ R0qp1 ` a ` bq ` KD `
?
∆
, (23)

with a “
klr12

pklr21`klr23q
, b “ 1

klr31
pklr13 `

klr23klr12

klr21`klr23
q and,

∆ “ ppR0 ´L0qp1` a` bq `KDq2 ` 4p1` a` bqL0KD. In addition, this function is strictly increasing
function of L0.
• Case 2: Moreover, if the ligand is considered in excess at the plasma membrane, the cAMP function
has a simplified expression.
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-CRN study: Thanks to the deficiency 0 theorem [20], each compatibility class admits one asymptoti-
cally locally stable stationary point. Moreover, the stationary point is globally stable because there is
just one linkage class [17].
-Stationary point and cAMP function:

$

’

&

’

%

LR1 “ R0L0

KD1`L0p1`a`bq
,

LR2 “ aR0L0

KD1`L0p1`a`bq
,

LR3 “ bR0L0

KD1`L0p1`a`bq
,

cAMP pL0, R0q “ p
k`
1

k´
1

` a
k`
2

k´
2

` b
k`
3

k´
3

q
R0L0

KD ` L0p1 ` a ` bq
, (24)

with a “
klr12

pklr21`klr23q
and b “ 1

klr31
pklr13 `

klr23klr12

klr21`klr23
q. In addition, the function is strictly increasing

function of L0.

III.2.3 LR recycled model

The LR recycled model (Fig.11-B) considers the dissociation of the LR complexes in all compartments
and the recycling of LR complexes. Thanks to the deficiency 0 theorem, each compatibility class
admits one asymptotically locally stable stationary point. Moreover, the stationary point is globally
stable because there is just one linkage class [17].

III.2.4 R recycled model

In the R recycled model, (Fig.11-C), just receptors are recycled to the plasma membrane.
• Case 1:
-CRN study: In this model, the deficiency 0 theorem isn’t applicable because the systems aren’t
weakly-reversible.
-Stationary point : LR1 “ LR2 “ LR3 “ R2 “ R3 “ 0 and R1 “ R0 The ODE system is degenerated
and admits an equilibrium point which is located on the edges of the system. This result is obtained
because the ligand at the plasma membrane isn’t recycled and isn’t degraded. In order to study the
cAMP dose response at the steady state, this model isn’t applicable in our case.
• Case 2: If the ligand is considered in excess in all compartments, the model has some nice prop-
erties. In this case, it seems interesting to apply the time scale hypothesis and to look a model with
association-dissociation reactions (Fig.12-A) and a quasi steady-state model (Fig.12-B) because they
haven’t exactly the same steady state. It permits to compare the cAMP dose response with the time
scale hypothesis. The function li and pi are defined in (13) and can be used as general kinetics.
-CRN study: In the model with association-dissociation reactions, the stationary point is globally sta-
ble because there is just one linkage class and kinetics are law mass action and in the quasi steady-state
model, the stationary point is asymptotically locally stable thanks to the deficiency 0 theorem.
-Stationary point and cAMP function for the quasi steady-state model:
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with, a “
klr12

klr23
L2

K2
D

`L2
`pkr21`kr23q

K2
D

K2
D

`L2

and b “
K3

D`L3

kr31K3
D

“

klr13 ` ap L2

K2
D`L2

klr23 ` kr23
K2

D

K2
D`L2

q
‰

. This

function is a strictly increasing function of L0.
-Stationary point and cAMP function for the model with association-dissociation reactions:
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Figure 12: R recycled model with ligand in excess in all compartments (Case 2). The model
with association-dissociation reactions (A) and the quasi steady-state model (B).
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III.2.5 LR-L-R recycled model

The LR-L-R recycled model considers that all quantities are recycled to the plasma membrane (Fig.11-
D). The complete model doesn’t say much because it isn’t weakly reversible and calculus is complicated.
However, if the flows are equals : kik “ klrik “ klik “ krik, this model presented in (Fig.13) is obtained
and it’s possible to calculate the steady state.
• Case 1:
-CRN study: There are no direct theorems linked with the CRN theory to prove the existence and
uniqueness of one stationary point in the initial and quasi steady-state model. However, by the
Jacobian Matrix, the stationary point is asymptotically locally stable for the quasi steady-state model.
The function fi, gi and hi are defined in (11) and can be used as general kinetics (proof in Appendix
B).
-Stationary point and cAMP function for the quasi steady-state model:
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Figure 13: LR-L-R recycled model with time-dependent ligand concentration (Case 1).
The model with association-dissociation reactions (A) and the quasi steady-state model (B) with
equal flows.

cAMP pL0, R0q “ LR1
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1
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1

`
k`
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LR2 `
k`
3

k´
3

LR3, (26)

with a “ k12

pk21`k23q
, b “ 1

k31
pk13 ` k23k12

k21`k23
q and ∆ “ ppR0 ´L0qp1` a` bq `KDq2 ` 4p1` a` bqL0KD.

In addition, the function is strictly increasing function of L0.

Remark 10. We found the same stationary point for LR1 that the LR recycled no dissociation model
(Fig.11-A).

• Case 2: the ligand is considered in excess and two models are studied: the model with association-
dissociation reactions (Fig.14-A) and the quasi steady-state model (Fig.14-B).
-CRN study: In the model with association-dissociation reactions, the stationary point is globally
stable because there is just one linkage class and kinetics are law mass action and in the quasi steady-
state model, the stationary point is asymptotically locally stable thanks to the deficiency 0 theorem.
-Stationary point and cAMP function for quasi steady-state model:
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Figure 14: LR-L-R recycled with ligand in excess in all compartments (Case 2). The model
with association-dissociation reactions (A) and the quasi steady-state model (B).

III.2.6 R recycled no association model

The R recycled no association model (Fig.11-E) is equivalent to the model with two compartments
(Fig.7-C). If the ligand isn’t a constant, the stationary point is degenerated, but if we consider ligand
in excess, the model has nice properties (Case 2).
-CRN study: Thanks to the deficiency 0 theorem [20], each compatibility class admits one asymptoti-
cally locally stable. Moreover, the stationary point is globally stable because there is just one linkage
class [17].
-Stationary point and cAMP function:
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(28)
In addition, the function is strictly increasing depends on L0.

Thanks to these various models, one obtains some interpretive formulas to compare with the ex-
pression when there is just one compartment (18). The higher differences between models are what
quantities are recycled: receptors, complex, all quantities and the association/dissociation of com-
plexes. However, the best model from a biological point of view seems to be the last one (Fig.11-E:
R Recycled no association model), when only receptors are recycled and when there is no more as-
sociation in endosomes. In this case, the interpretive formula looks like (16). Nevertheless, analytic
expressions are complicated to interpret as there are several parameters. The cAMP functions are all
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strictly increasing function of L0 but not necessarily of the others parameters. Models could be fitting
with biological data even if the dose response will not allow us to discriminate the different models.
The study of the dynamic properties might be interesting to select models.

IV Conclusion

The routing of endosome seems to influence intracellular response by the production of cAMP. The
two different dynamic approaches, deterministic or with a random formalism permitted the study of
this problem in two ways. Each approach has its own limits and advantages. The first approach is
called structured or compartmental because it considers a globalization of quantities in the different
types of compartments. This method follows the general behaviour of a dynamic population along the
time through chemical reaction systems. Moreover, in this case, the analysis of the system is possible
thanks Chemical Reaction Network theory. This approach permitted the development of many net-
works about the routing of endosomes for gonadotrophin receptors which lead to the study of their long
time behavior, their steady states and their stability. Some analytical expressions are deduced from
this analysis and can be compared to biological problems. In fact, the effect of parameters was studied
and reveals that the signalling response dynamics might be influenced in distinct opposite ways by
the receptor trafficking according to the ligand-receptor interaction parameters. However, to develop
these models different assumptions were advanced which could be discussed. In fact, considering that
the ligand is in excess in all types of compartments doesn’t seem realistic and is complicated to verify
by biological experiences. The different networks aren’t comparable because they don’t look exactly
the same quantities and the same transitions between compartments. The current limitation of this
formalism is that it doesn’t consider the specific behaviour of variables. The individual-based model
with a random formalism takes into account the evolution of each individual. This approach is maybe
closer of the biological problem because this method considers that the size of a new endosome but also
the events of creation or degradation of these vesicles are random. Finally, the piecewise deterministic
Markov process gives an idea of the number of compartments in function of time whereas this number
isn’t accessible in the first approach.

The first limit of this work is that models weren’t calibrated with biological data. In fact, like bi-
ologists are developing intracellular sensors, they are not yet capable to address these sensors to VEE
and EE and to obtain precisely cAMP quantities produced in each compartment. The perspective of
this work is finally to calibrate mathematical models with biological data with a statistical approach
of parameter estimation. Such calibration may help to rule out or to favour some of the models we
developed, and would help gaining biological knowledge on the exact molecular trafficking involved
in signalling cascade. All models consider the mass conservation for receptors to obtain analyzable
networks and interpretive expressions. However, from a biological point of view, a quantity of receptors
is degraded. An improved model with an additional compartment (lysosome) may be developed. In
addition, to get an individual-based model with three compartments, an algorithm in this case could
be written. Studying in a long time, stochastic processes is also conceivable. The comparison of the
ODE and PDMP models (Fig.15) may be not relevant. To compare them, an intermediate step should
be considered: a moment closure step. This theory permits thanks to moment of order one (mean) or
order two (variance) to obtain a reduce set of ODEs, easier to analyze and to compare to ODEs coming
from reaction networks. It makes the average of the stochastic approach and allows the comparison
between equations from moment closure and from deterministic models. Then, the analysis of the
moment closure equations could be done. In addition, the interpretation of the parameters in the
three compartment models might be possible but maybe with long and complex calculations.

Moreover, this mathematical model is simplified for signalling cascade. To be more precise, it could
be interesting to take a deeper look after the mechanisms of activation of the G-protein [23], the β-
arrestin role [24] but also to take into account other molecules of the cascade (ATP, AC, PDE,...). The
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Figure 15: Comparison of the cAMP quantity total for both approaches. In blue, the PDMP
model and in red, the ODE model.

conformation of receptors and properties of ligands can also be a way of study: active or non-actives
receptors [25], dimmers receptors [6], promiscuous between proteins [32], inverse agonisms [26] and
biaised-agonisms [27]. Moreover, some receptors can have a constitute activity and the synthesis of
new receptors is also possible. Endosomes have also properties like the pH in function of their matu-
ration. It could be a parameter to consider to discriminate compartments [29]. Endosomes can also
product reactions together (fusion, fission, degradation,..) and by considering it, a model to follow the
number of endosomes which contained a number of molecules [30] was created. Another interesting
molecule is APPL1 because biologists showed that this molecule is necessary for VEE recycling [11].
Other mathematical modelling could be envisaged by considering more compartments: lysosomes, nu-
cleus, Golgi apparatus [3] or the spatial dynamic of cAMP. In fact, cAMP can move inside the cell.

This internship brought me a lot of skills in mathematics because I learnt new mathematical theories
(CRN, PDMP, moment closure) and I have deepened my knowledge of modelling. Many discussions
with biologists gave me an opening on this domain and the desire to continue in biological application.
Like biologists were in the same team, it was really interesting to discuss with them to consider real
biological problems and then to think about modelling. I learnt how to translate biological problem
in mathematics. The research world is fascinating and possibilities are plentiful. It’s difficult to stop
because we could always go further. Particularly, I learnt to structure my research. Moreover, during
my internship, I assisted to several presentations in mathematics but also in biology and I had the
opportunity to present my work in front of the BIOS team but also in front of the MUSCA team at
INRIA Saclay. I improved my English through presentations and discussions.
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A Biological figures

Figure 16: [Confidential] The intracellular production of cAMP represents a major part
of the production of cAMP total. These figures were realised by Juliette Gourdon, in the PhD in
BIOS team under the supervision of Frédéric Jean-Alphonse. The aim of these figures is to show the
influence of internalization and to compare cAMP production with internalization or not. Dyngo4A
inhibits the internalization. (A) and (C) represent responses in HEK293 cells whereas (B) et (D)
represent biological responses in mLTC1 cells. (A) and (B) represent the production and degradation
of cAMP according to time with Dyngo4A (in yellow) or not (in dark). (C) and (D) represent the dose
response of cAMP obtained with the area under the curve with Dyngo4A (in yellow) or not (in dark).

B General kinetics

This section will prove that the functions f , g, h, l and p can be used for general kinetics. However,
we detail only the proof for f because it’s the same principle for the others.

Demonstration . @t P R`,

1. f is defined and C1 on R`.

2. f “ 0 ðñ Rtot “ 0 or Ltot “ 0.

Rtot “ 0 Ñ f “Ltot ` KD ´
a

p´Ltot ` KDq2 ` 4KDLtot “ 0,

Ltot “ 0 Ñ f “Rtotptq ` KD ´
a

pRtotptq ` KDq2 “ 0.
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3. f is strictly positive if Ltot ‰ 0 and Rtot ‰ 0.

f ą 0 ðñ
1

2
pLtot ` Rtot ` KD ´

a

pRtot ´ Ltot ` KDq2 ` 4KDLtotq ą 0

ðñLtot ` Rtot ` KD ą
a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

ðñpLtot ` Rtot ` KDq ą
a

pRtot ´ Ltot ` KDq2 ` 4KDLtot.

If, Ltot ` Rtot ` KD ą 0 , we obtain :

ðñpLtot ` Rtot ` KDq2 ą pRtot ´ Ltot ` KDq2 ` 4KDLtot

ðñp2Ltotp2Rtot ` 2KDq ą 4KDLtot

ðñ4LtotRtot ą 0 that is always true if Ltot ‰ 0 and Rtot ‰ 0.

4. Bf
BLtot

ě 0 and Bf
BRtot

ě 0.

• Bf
BLtot

“ 1
2 p1 ´ Ltot´Rtot`KD?

pRtot´Ltot`KDq2`4KDLtotq
ě 0 ?

– Case 1: Ltot ´ Rtot ` KD ě 0,

Bf

BLtot
ě 0

ðñ1 ´
Ltot ´ Rtot ` KD

a

pRtot ´ Ltot ` KDq2 ` 4KDLtotq
ě 0

ðñ
a

pRtot ´ Ltot ` KDq2 ` 4KDLtot ě Ltot ´ Rtot ` KD

ðñpRtot ´ Ltot ` KDq2 ` 4KDLtot ě pLtot ´ Rtot ` KDq2

ðñp2Rtot ´ 2Ltotqp2KDq ` 4KDLtot ě 0

ðñ4KDRtot ě 0 that is always true because Rtot ě 0.

– Case 2: Ltot ´ Rtot ` KD ď 0,

Ltot ´ Rtot ` KD ď 0

ðñ
Ltot ´ Rtot ` KD

a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

ď 0

ðñ1 ´
Ltot ´ Rtot ` KD

a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

ě 1

ðñ
1

2
p1 ´

Ltot ´ Rtot ` KD
a

pRtot ´ Ltot ` KDq2 ` 4KDLtotq
q ě

1

2
ą 0.

• Bf
BLtot

“ 1
2 p1 ´ Ltot´Rtot`KD?

pRtot´Ltot`KDq2`4KDLtotq
ě 0 ?

– Case 1: Rtot ´ Ltot ` KD ě 0,

1

2
p1 ´

Rtot ´ Ltot ` KD
a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

ě 0

ðñ1 ě
Rtot ´ Ltot ` KD

a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

ðñ
a

pRtot ´ Ltot ` KDq2 ` 4KDLtot ě Rtot ´ Ltot ` KD

ðñpRtot ´ Ltot ` KDq2 ` 4KDLtot ě pRtot ´ Ltot ` KDq2

ðñ4KDLtot ě 0that is always true.
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– Case 2: Rtot ´ Ltot ` KD ď 0,

Rtot ´ Ltot ` KD ď 0

ðñ
Rtot ´ Ltot ` KD

a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

ď 0

ðñ
1

2
p1 ´

Rtot ´ Ltot ` KD
a

pRtot ´ Ltot ` KDq2 ` 4KDLtot

q ě
1

2
ą 0.

C Piecewise Deterministic Markov Process model

Figure 17: PDMP model for two types of compartments. This figure represents a schematic
point of view the piecewise deterministic Markov process for this model. Recycling and internalization
events have a random time which depends respectively on the quantity of receptors in each endosome
and the quantity of complex at the plasma membrane. Each compartment posses its own ordinary
differential equations system.
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