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Central dogma
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Deterministic inducible regulation
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Dependence of bistability on κd and K
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Intrinsic and Extrinsic noise
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Bursting (intrinsic noise) in cells

Experimentally observed that in many organisms the
amplitude of protein production through bursting
translation of mRNA is exponentially distributed at the
single cell level

Let the density of this distribution be h(y) =
1

b
e−y/b

Yu (2006), Science, 311
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Bursting as a jump Markov process

Replace the simple deterministic dynamics

dx

dt
= −γx+ γκdf(x)

with
dx

dt
= −γx+ Ξ(h, γκbf(x))

where Ξ(h, ϕ) is a jump Markov process occurring at a
rate ϕ and distributed with density h
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Stationary density as a function of κb
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Effects of bursting
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The presence of bursting can drastically alter regions of bistability
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Noise induced by bursting

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Noise in the inducible regulation

b

 

 

κ
b
=2

κ
b
=5

κ
b
=10

κ
b
=15

σ2 /µ2

K=10
n=∞

– p. 11/19



Extrinsic noise as a white noise process

Replace the simple deterministic dynamics

dx

dt
= −γx+ γκdf(x)

with
dx = [γκdf(x)− γx]dt+ σ

√
xdw

where dw is a standard white noise process
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Extrinsic noise ∼ intrinsic noise

Let replace the average burst amplitude b with
b → σ2/2γ ≡ bw and κb → κe = 2γκd/σ

2 ≡ κd/bw, then
the stationary density in the case of extrinsic noise has
the same form as in the case of intrinsic noise and the
same results hold.
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The presence of fluctuations in the degradation noise has the same effects as bursting
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Conclusion

Intrinsic noise and extrinsic noise are indistinguishable
from the stationnary density in this model.

The stationary densities can be much more wider (and
asymmmetric) than a poissonian ditribution.

Noise-enhanced bistability.

And noise-induced bistability when n = 1.

When both noise are present, their effect sum up
additively.
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Problems and Further Studies

Intrinsic noise should take into account transcriptional
and/or translational delays.

Extrinsic noise should take into account time
correlations.

Mean exit time and auto-correlation function should be
derived to give more information on the dynamics out of
equilibirum.

The full three-stage model should be considered with
noise.
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Sample paths
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Sample paths
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Sample paths
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Sample paths

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

Time

Bistability with Bursting and diffusion
κ

b
=4.44

b=1
σ2=2
γ=1
K=4
n=4x

– p. 21/19


	Central dogma
	Deterministic inducible regulation
	Dependence of bistability on $kappa _d$ and $K$
	Intrinsic and Extrinsic noise
	Bursting (intrinsic noise)
in cells
	Bursting as a jump Markov process
	Stationary density as a function of $kappa _b$
	Effects of bursting
	Noise induced by bursting
	Extrinsic noise as a white noise process
	Extrinsic noise $ sim $ intrinsic noise
	Conclusion
	Problems and Further Studies
	Some References (Not exhaustive)
	Sample paths
	Sample paths
	Sample paths
	Sample paths

