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Synopsis (250 words)

Understanding how cells process the plethora of signals transduced by G protein-coupled 

receptors (GPCRs) is of paramount importance, not only to decipher the molecular basis of 

life, but also to facilitate innovative approaches in drug discovery. Over the last few years, 

GPCRs structural biology has made huge strides, strengthening the concept that these 

receptors exist in multiple conformations. Importantly, the nature of the conformers that 

are stabilized and therefore the effectors they recruit directly depend on the chemical 

structure of the bound ligand. Selective control of intracellular signaling pathways activated 

downstream of GPCRs using particular compounds that are referred to as “biased ligands” is 

becoming a reality, provoking a revision of the classical concept of pharmacological efficacy. 

Inside the cell, the networks triggered by GPCRs and the way they ultimately generate 

context-dependent biological responses are extremely intricate; activated GPCRs can couple 

to multiple transducers; homo- and hetero- receptor dimers can recruit distinct effectors in 

response to the same ligand; intracellular signaling effectors can be shared by different 

networks and their local concentrations and trafficking are tightly regulated; cellular 

outcomes generally require a combination of upstream regulatory events; finally different 

extracellular signals co-exist, eliciting composite responses. To face this huge complexity, 

computational modeling has become critical. This chapter reviews the existing modeling 

strategies and how they can be combined with experimental biology in order to build 

quantitative and predictive computational models of GPCR-induced transduction 

mechanisms and intracellular networks.



Introduction

GPCR pharmacology has profoundly evolved over the last decade as it is now admitted that 

particular ligands, generally referred to as “biased”, can selectively modulate a subset of the 

signaling events triggered by the full agonist while having no or even negative effects on the 

other signaling events. This concept is consistent with the accumulating structural data 

demonstrating the existence of multiple inactive and active conformations of GPCRs. This 

raises the possibility to develop new classes of drugs with more selective actions hence 

fewer side effects. However, this also demands a redefinition of the classical representation 

of pharmacological efficacy and of the methods that allow its estimation (1).

The general representation of how GPCRs activate intracellular signaling and eventually 

modify cell fate has also dramatically evolved over the past decades. Discrete linear signaling

cascades have long been thought to connect GPCRs to transcription factors. This simplistic 

representation has progressively moved towards a paradigm in which communication 

networks made of multi-protein ensembles convey signals and integrate them into adapted 

biological outcomes. Several layers of complexity have been identified and contribute to the 

remarkable processing capability of these signaling networks: i) multiple ligands hit a target 

cell at the same time, some of them in a pulsatile manner, and must be processed 

simultaneously, directly impacting the activation dynamics of the intracellular networks; ii) 

any given plasma membrane GPCR, acting as a monomer or participating to a homodimer, a 

heterodimer or a higher order oligomer, can connect to multiple transduction mechanisms; 

iii) receptors belonging to different classes can be associated into signalosomes which then 

trigger intracellular signals that are spatially and temporally encoded; iv) feedbacks, 

feedforward controls and crosstalks also contribute to the processing of signals through 



networks; v) signaling pathways convey quantitative information reflecting the strength of 

the stimulus by taking advantage of their nonlinear nature to convert stimulus intensity into 

signal duration, even leading to oscillations in some cases (2). 

Deciphering how all these entities operate together at the molecular level clearly represents 

a major challenge for the whole field and could open novel avenues towards the 

development of pathway-selective drugs. It is becoming increasingly clear that mathematical

and computational approaches are necessary to tackle the high level of complexity involved.

Intrinsic efficacy and its measure 

GPCR ligands have long been characterized by two fundamental parameters: i) affinities 

which reflect the tightness of the ligand/receptor interaction and ii) intrinsic efficacies which 

account for the ability of a receptor-bound ligand to elicit a biological response by recruiting 

effector proteins. The combination of these two parameters defines the potency. 

Accordingly, two agonists can be equipotent while having different intrinsic efficacies and 

affinities. In the classical two-state model, ligands were considered to have linear efficacy, a 

receptor existing in either an inactive or an active conformation. In this view, the magnitudes

of responses of different signaling pathways activated by a GPCR/ligand pair were expected 

to be always proportional to the intrinsic efficacy of this ligand. Practically, this means that 

for any given GPCR/ligand pair, all functional read-outs were predicted to lead to the same 

pharmacological profile (1).

An increasing number of observations do not fit with this theory. Biophysical and structural 

data have recently accumulated for several GPCRs and provide evidence that unliganded as 



well as activated GPCRs actually exist in multiple active and inactive conformations. 

Extending this idea, the existence of ligand-specific conformations has been substantiated 

using a vast array of approaches such as molecular dynamics, nuclear magnetic resonance 

spectroscopy, fluorescence spectroscopy, quantitative mass spectrometry or intra-molecular

FRET. Collectively, all these findings lead to a novel paradigm in which each ligand stabilizes a

defined set of active conformations of the receptor. Importantly, a receptor conformer 

reaches optimal stability when it simultaneously binds a ligand on the extracellular side and 

an effector protein in the cytosol (3). If different (biased) ligands can stabilize different 

conformers of a receptor, they can also differentially recruit and activate intracellular 

effectors (1, 3). Defining and calculating intrinsic efficacies in this paradigm becomes much 

more challenging because of the multidimensional nature of the problem (4).

Despite the wide acceptation of the concept of ligand bias, the methodology allowing to 

rigorously quantify it remains a subject of debate. Experimentally, the ideal situation would 

be, for each ligand/receptor pair, to be able to measure the kinetics of association with all 

the effector proteins recruited as well as their respective degree of activation. This task is 

extremely difficult to achieve with the current experimental methods. Instead, downstream 

read-outs (second messengers, kinase activities, gene expression, etc) are often measured. 

Measurements are not always in real-time, many end-point assays are used with reaction 

times ranging from seconds (calcium) to minutes (cAMP, IP, kinase activities) or hours 

(reporter genes). One of the main issues is the difficulty to compare signaling events that 

dramatically differ in their degree of amplification (e.g.: second messenger or reporter genes

versus -arrestin recruitment), thereby differentially reflecting the amount of spare 

receptors (i.e.: a small fraction of ligand-bound receptor generates a maximal second 



messenger response whereas full -arrestin recruitment necessitates full receptor 

occupancy). Moreover, the activation level of downstream read-outs only partially depends 

on the intrinsic efficacy of the ligand. Many intermediate reactions and cross-talks also 

impact on the end-point result. Inferring intrinsic efficacies from such heterogeneous data is 

very difficult and can lead to erroneous estimations.

Several methods, all derived from Black and Leff’s operational model (5), have been 

proposed recently, each presenting assets and drawbacks (4, 6). All of them are based on the

acquisition of sigmoidal dose-response curves for all the read-outs, neglecting the kinetics of

the different responses that can occur at different time scales (Figure 1A, D). 

Novel experimental methods based on different variation of BRET, FRET or protein 

complementation assays now allow measuring many molecular events (interactions, 

activities, etc) in real-time in living cells. Tools have been developed to measure the 

recruitment and activation of many key effectors involved in GPCR transduction. 

Paradoxically, in current practice, only the area under the curves is retained and plotted as 

sigmoidal dose response signal.

For all these reasons, we believe that dynamical modeling of GPCR activation would 

represent an asset over the existing methods. Indeed, dynamical models take into account 

both quantitative and temporal aspects of GPCR activation and would allow computing 

intrinsic efficacies for each ligand/conformer pair compared to a reference (Figure 1B). 

When downstream read outs are measured, dynamical models take into account 

concentrations and dynamics of all the shared effectors as well as cross-talks and 

complexation with effector proteins (Figure 1C). The mathematical formalisms and the 



parameter optimization methods that could be used to infer intrinsic efficacies are similar as 

those used to build signaling network models and are described below.

From receptor transduction to intracellular signaling networks activation

As discussed in the previous section, intrinsic efficacy is a fundamental characteristic 

inherent to every GPCR ligand, which describes the way a given GPCR-bound ligand stabilizes

a specific subset of receptor conformers and how these conformers are functionally coupled 

to different transduction mechanisms. All these effectors, activated at the receptor level, can

be viewed as delivering the input signals that control intricate signaling networks inside the 

cell. As these networks process all the extracellular information, they are ultimately 

responsible for triggering complex cellular responses such as: proliferation, differentiation, 

apoptosis, gene regulation, etc. Therefore, it is of paramount importance to decipher how 

intrinsic efficacies at the receptor level convey input signals to intracellular networks, how 

these signals are propagated, processed and ultimately lead to adapted outcomes. For all 

the reasons already discussed above, this represents a very challenging task and cannot be 

tackled without computational modelling.

Generating experimental data to build models

It is important to bear in mind that the quality of the computational model directly depends 

on the experimental data that can be generated. The experimental methods that are 

available to study cellular signaling are rapidly evolving, paving the way for better, more 

predictive computational models. 



The analysis of protein phosphorylation profiles in GPCR-stimulated cells is a classical way to 

assess the activation of intracellular signaling pathways. Typically, phosphorylation dynamics

are measured with phosphospecific antibodies combined to Western blotting. However, this 

approach requires large amounts of biological material and due to its poor throughput, does 

not allow large-scale analysis. More recently, phosphorylated peptides from complex 

samples have been analyzed by mass spectrometry, typically allowing the identification of 

thousands of phosphopeptides per sample. However, these MS-based methods allow 

comparing only a limited number of biological conditions. In contrast, automated spotting of

protein extracts, such as Reverse-Phase Protein Array or microwestern arrays, allow 

simultaneous analysis of thousands of samples with many different phosphor-specific 

antibodies. Cell-sorting-based approaches are also capable of acquiring cell signaling data 

with high throughput and reliability (2). Thanks to this substantial throughput, kinetics, dose-

responses, and targeted perturbations can be systematically carried out and analyzed. 

The identification and analysis of multi-protein complexes are essential to decipher the 

architecture of signaling networks. High throughput approaches have long been developed 

to tackle this problem: yeast two hybrid screens, tandem-affinity purification and mass 

spectrometry or luminescence-based mammalian interactome mapping have been 

successfully used at a genome-wide scale (2). 

One major breakthrough has been the advent of experimental approaches allowing 

monitoring GPCR-induced signaling events in real time in living cells (7). In particular, 

approaches that use biosensors based on fluorescence, bioluminescence and/or protein 

complementation combine unmatched spatial and/or kinetics resolutions of signaling 

activities. Protein-protein interactions and changes in protein conformation can also be 



monitored in real time in living cells using similar approaches. This obviously represents 

great assets when developing computational models. Genetically encoded fluorescence 

resonance energy transfer (FRET)-based sensors have helped capturing the spatiotemporal 

patterns of second messengers, kinase activities and GPCR activation. As FRET data are 

generally acquired using fluorescence microscopy, they allow measurements of signaling 

events in single cells, a feature amenable to stochastic modeling. Bioluminescence 

resonance energy transfer (BRET) has also been extensively used to monitor signaling, 

protein-protein interactions and conformational changes in living cells. BRET is typically 

carried-out in multi-well plate format and ensures the production of huge amounts of 

dynamic data from cell populations that are very well suited for deterministic dynamical 

modeling.

Another fundamental aspect when building computational models is the ability to apply 

targeted perturbations and to measure the consequences on the network behavior. 

Perturbations are very useful when building the model to reduce the number of possible 

connections within the network as well as, at a later stage, when testing the validity of 

model-driven predictions. There are many different options to perturb GPCR-induced 

signaling networks. The perturbations can be applied at the ligand level by using biased 

compounds or by applying non-monotonous stimulation patterns. Mutations and/or 

polymorphisms occurring at the receptor level can also lead to biased intracellular 

responses. Various targeted perturbation approaches such as specific kinase inhibitors, 

dominant negative constructs, or interfering RNAs, allow hitting specific nodes within the 

signaling network and are therefore invaluable tools (2). 



Building computational models

Different types of mathematical formalisms can be used depending on the situation, the 

available data and the modelling philosophy. Models can be static or dynamic, they can 

represent time in a discrete or continuous fashion and they can be deterministic or 

stochastic (i.e.: governed by random laws).

Static models are mathematical formalizations of the molecular species involved in signaling 

networks and the type of relationships they have: catalysis, physical interaction, etc (8). Over

the last years, knowledge from literature has been made accessible through databases. 

Examples of such databases are Reactome, in which pathways are manually curated and 

peer-reviewed; WikiPathways, which is based on community curation or NetPath which 

gives access to the references used to build the pathways. An extensive list of databases can 

be found on the Pathguide website: http://www.pathguide.org. In addition, published 

models are increasingly deposited in the Biomodels database. Cytoscape or Pathway Studio 

are tools directly connected to these databases, to enable the automatic reconstruction and 

the graphical visualization of large networks.

In parallel, various automated methods have been developed in order to build static models 

directly from data sets. In particular, many methods are available to build transcription 

regulation networks from microarray data. Methods have also been designed to exploit 

other type of data such as RNAi or phosphoproteomic. However, these methods are based 

on the exploitation of a single experimental method whereas experimental exploration of a 

signaling system generally requires a combination of multiple methods. Attempts to 

formalize the elementary reasoning elements using first order logic rules are currently being 

http://www.pathguide.org/


explored. To infer a given signaling network, these rules, together with elementary 

experimental facts, feed an inference engine which reconstructs the network (9).

GPCR-induced signaling events involve fast and reversible reactions. It is therefore 

fundamentally important to take the dynamics into consideration when trying to model and 

predict the recognition/effect relationships in GPCR signaling. Static models described above

are often too detailed, involving hundreds of molecules, and therefore are not amenable to 

dynamic modeling. Consequently, some molecules have to be eliminated in a process known

as “model reduction” in order to obtain a model that retains the essential properties of the 

complete system with a limited number of variables.

The ordinary differential equations (ODE) formalism remains very popular when building 

dynamical models. In this formalism, the concentration variation of a given molecule is 

expressed as a function of time and depends on concentrations of the other molecules 

within the network. Different rate laws can to be chosen. The simplest kinetic law is derived 

from mass action law. For enzymatic reactions, many authors still prefer Michaëlis-Menten 

kinetic law (Figure 2). However, for most instances and using the right parameters, the 

simulations of both kinetic laws are superimposable with mass action law generating less 

parameters (2). 

Another popular formalism is the Bayesian network. In this formalism the time course is 

discrete, and at each time point, each molecule has a probability to undergo a state 

transition. This method has the advantage to represent more accurately the reality of 

molecular reactions and, unlike ODE, allows simulating stochastic events. However, 

computation time rapidly explodes when modelling large networks. 



Once the model is precisely defined and all the parameters are known (kinetic constants, 

affinities, initial concentrations, etc) the system can be simulated to estimate the evolution 

of the concentrations of the different molecular species as a function of time. Different 

software such as CellDesigner or Copasi allow performing these simulations easily.

Estimating parameters

The most challenging part of dynamical modelling is certainly the determination of the 

parameter values. Indeed, measuring rate constants or local concentrations in living cells is a

difficult task. Moreover, the models are often simplified, and successive reactions are 

aggregated in the model-reduction process. In this case, the kinetic constants cannot be 

experimentally approached. Some authors approximate parameter values from publications,

even though they were often obtained in different biological conditions, or to use “educated

guesses”. Another more rigorous option is to search for a parameter set that, when used to 

simulate the model dynamics, reproduces a set of experimental data. This process is called 

“parameter estimation” (Figure 3) and has become an important challenge. Classical 

continuous parameter optimization methods include genetic algorithms, evolutionary 

programming, Hooke-Jeeves, Levenberg-Marquardt, Praxis, Particle swarm, Steepest 

descent, SSmGo or BIOCHAM (2). 

The goal when developing dynamical models is to be able to predict the behavior of the 

system in biological conditions different from those used to build and calibrate the model. 

For instance, we have recently shown, using the Angiotensin type I receptor-mediated 

signaling pathway as a benchmark, that a topologically correct model and accurate 

parameter estimation can lead to valid predictions. Indeed, in this work we were able to 



propose multiple predictions using the model that were experimentally validated at a later 

stage (10). 

Conclusions

Modeling GPCR-induced transduction and the resulting signaling networks is a difficult but 

important task. Experimental methods now exist to acquire dynamic data with the precision 

and throughput compatible with modeling. This data acquisition step is essential and has to 

be carefully planned. The nature of the data to acquire, but also the frequency of 

measurements and the type of targeted perturbation to apply, directly impact on the quality

of the model. Computational tools for model building, reduction and parameter estimation 

are available to build models that can be predictive. In our opinion, in the near future, 

computational modelling will improve the way intrinsic efficacies are measured, especially in

the case of biased ligands. In addition, models of signaling networks could lead to an 

unprecedented understanding of the cellular machinery and how the multiple signals 

triggered by a given receptor are processed in an adapted biological response. Although a lot

still has to be done, models can already be used to explore the possible behaviors of the cell 

as a function of external stimuli, thereby facilitating the rational design of drugs with more 

selective action.

Figure legends

Figure 1: Determining ligand bias. A: In methods derived from Black & Leff’s operational 

models, the ligand L associates with the receptor to give the LR complex, which directly 



triggers effects 1 and 2 (E1 and E2). The computation of the bias is valid under the 

hypotheses that the ligand largely exceeds the receptor, and that at equilibrium the quantity

of ligand-receptor complex remains constant. B: the ligand-receptor complex can reversibly 

adopt a spectrum of different conformations, each triggering one of the observed effects. C: 

triggering of both effects relies on the complexation of the ligand-receptor complexes with 

an effector protein (P1 and P2). D: toy example of two different ligands leading to same 

global effects (area under the curves) but with different dynamics (top curves). If observed 

at a given time point, they give different dose-response curves (bottom left), but if observed 

at end-point, when the system is back to equilibrium, they give the same dose-response 

curves (bottom right). 

Figure 2: Formalism for dynamic models. General differential expression of the variation of 

B’s concentration when considering a simple mass action law (1) or a state transition 

depending on a third molecule (C), for example state transition mediated by an enzyme (2). 

Alternatively, Michaëlis-Menten model for a reversible state transition mediated by an 

enzyme (C) can be used (3). 

Figure 3: Computing the error between experiment and simulation. A: The error is computed

as a function of the differences between simulation and experimental measure for each 

observable (i) and each time point (t). Classical error functions are sums of the square of the 

δs. B: Error landscape for a simple two parameters problem. The red region represents the 

global minimum, which should be reached when estimating the parameters. This landscape 

also presents two local minima, in which the optimization algorithms might get trapped. Of 

course real optimization problems are in n dimensions with n being the number of 

parameter to estimate which is typically at least a few tenth in signaling network models.
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