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1. Introduction. We study a multi-type age dependent model in both a de-19

terministic and stochastic framework to represent the dynamics of a population of20

cells distributed into successive layers. The model is a two dimensional structured21

model: cells are described by a continuous age variable and a discrete layer index22

variable. Cells may divide and move irreversibly from one layer to the next. The cell23

division rate is age and layer dependent, and is assumed to be bounded below and24

above. After division, the age is reset and the daughter cells either remain within25

the same layer or move to the next one. In its stochastic formulation, our model is a26

multi-type Bellman-Harris branching process and in its deterministic formulation, it27

is a multi-type McKendrick-VonFoerster system.28

The model enters the general class of linear models leading to Malthusian expo-29

nential growth of the population. In the PDE case, state-of-the-art-methods call to30

renewal equations system [6] or, to an eigenvalue problem and general relative entropy31

techniques [7, 9] to show the existence of an attractive stable age distribution. Yet,32

in our case, the unidirectional motion prevents us from applying the Krein-Rutman33

theorem to solve the eigenvalue problem. As a consequence, we follow a constructive34

approach and explicitly solve the eigenvalue problem. On the other hand, we adapt35

entropy methods using weak convergences in L1 to obtain the large-time behavior36

and lower bound estimates of the speed of convergence towards the stable age dis-37

tribution. In the probabilistic case, classical methods rely on renewal equations [2]38

and martingale convergences [3]. Using the same eigenvalue problem as in the deter-39

ministic study, we derive a martingale convergence giving insight into the large-time40

fluctuations around the stable state. Again, due to the lack of reversibility in our41

model, we cannot apply the Perron-Frobenius theorem to study the asymptotic of42

the renewal equations. Nevertheless, we manage to derive explicitly the stationary43
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§PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France. (romain.yvinec@inra.fr).

1

This manuscript is for review purposes only.

mailto:frederique.clement@inria.fr
mailto:frederique.robin@inria.fr
mailto:romain.yvinec@inra.fr


2 F.CLÉMENT, F.ROBIN AND R.YVINEC

solution of the renewal equations for the cell number moments in each layer as in [2].44

We recover the deterministic stable age distribution as the solution of the renewal45

equation for the mean age distribution.46

The theoretical analysis of our model highlights the role of one particular layer:47

the leading layer characterized by a maximal intrinsic growth rate which turns out48

to be the Malthus parameter of the total population. The notion of a leading layer49

is a tool to understand qualitatively the asymptotic cell dynamics, which appears to50

operate in a multi-scale regime. All the layers upstream the leading one may extinct51

or grow with a rate strictly inferior to the Malthus parameter, while the remaining,52

downstream ones are driven by the leading layer.53

We then check and illustrate numerically our theoretical results. In the stochastic54

case, we use a standard implementation of an exact Stochastic Simulation Algorithm.55

In the deterministic case, we design and implement a dedicated finite volume scheme56

adapted to the non-conservative form and dealing with proper boundary conditions.57

We verify that both the deterministic and stochastic simulated distributions agree58

with the analytical stable age distribution. Moreover, the availability of analytical59

formulas helps us to study the influence of the parameters on the asymptotic propor-60

tion of cells, Malthus parameter and stable age distribution.61

Finally, we consider the specific application of ovarian follicle development in-62

spired by the model introduced in [1] and representing the proliferation of somatic63

cells and their organization in concentric layers around the germ cell. While the orig-64

inal model is formulated with a nonlinear individual-based stochastic formalism, we65

design a linear version based on branching processes and endowed with a straightfor-66

ward deterministic counterpart. We prove the structural parameter identifiability in67

the case of age independent division rates. Using a set of experimental biological data,68

we estimate the model parameters to fit the changes in the cell numbers in each layer69

during the early stages of follicle development. The main interest of our approach is70

to benefit from the explicit formulas derived in this paper to get insight on the regime71

followed by the observed cell population growth.72

Beyond the ovarian follicle development, linear models for structured cell popu-73

lations with unidirectional motion may have several applications in life science mod-74

eling, as many processes of cellular differentiation and/or developmental biology are75

associated with a spatially oriented development (e.g. neurogenesis on the cortex, in-76

testinal crypt) or commitment to a cell lineage or fate (e.g. hematopoiesis, acquisition77

of resistance in bacterial strains).78

The paper is organized as follows. In section 2, we describe the stochastic and79

deterministic model formulations and enunciate the main results. In section 3, we80

give the main proofs accompanied by numerical illustrations. Section 4 is dedicated81

to the application to the development of ovarian follicles. We conclude in section 5.82

Technical details and classical results are provided in Supplementary materials.83

2. Model description and main results.84

2.1. Model description. We consider a population of cells structured by age85

a ∈ R+ and distributed into layers indexed from j = 1 to j = J ∈ N∗. The cells un-86

dergo mitosis after a layer-dependent stochastic random time τ = τ j , ruled by an age-87

and-layer-dependent instantaneous division rate b = bj(a) : P[τ j > t] = e−
∫ t
0
bj(a)da.88

Each cell division time is independent from the other ones. At division, the age89

is reset and the two daughter cells may pass to the next layer according to layer-90

dependent probabilities. We note p
(j)
2,0 the probability that both daughter cells remain91
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 3

on the same layer, p
(j)
1,1 and p

(j)
0,2, the probability that a single or both daughter cell(s)92

move(s) from layer j to layer j + 1, with p
(j)
2,0 + p

(j)
1,1 + p

(j)
0,2 = 1. Note that the last93

layer is absorbing: p
(J)
2,0 = 1. The dynamics of the model is summarized in Figure 1.

Figure 1. Model description. Each cell ages until an age-dependent random division time
τ j . At division time, the age is reset and the two daughter cells may move only in an unidirectional
way. When j = J, the daughter cells stay on the last layer.

94
Stochastic model. Each cell in layer j of age a is represented by a Dirac mass δj,a

where (j, a) ∈ E = J1, JK× R+. Let MP be the set of point measures on E :

MP :=

{
N∑
k=1

δjk,ak , N ∈ N∗, ∀k ∈ J1, NK, (jk, ak) ∈ E

}
.

The cell population is represented for each time t ≥ 0 by a measure Zt ∈MP :95

(1) Zt =

Nt∑
k=1

δ
I
(k)
t , A

(k)
t
, Nt :=� Zt,1�=

J∑
j=1

∫ +∞

0

Zt(dj, da) .96

Nt is the total number of cells at time t. On the probability space (Ω,F ,P), we97

define Q as a Poisson point measure of intensity ds⊗#dk ⊗ dθ, where ds and dθ are98

Lebesgue measures on R+ and #dk is a counting measure on J1, JK. The dynamics99

of Z = (Zt)t≥0 is given by the following stochastic differential equation:100

(2)

Zt =

N0∑
k=1

δ
I
(k)
0 , A

(k)
0 +t

+

∫
[0,t]×E

1k≤Ns−R(k, s, Z, θ)Q(ds,dk, dθ)

where R(k, s, Z, θ) = (2δ
I
(k)
s− , t−s

− δ
I
(k)
s− , A

(k)
s−+t−s)10≤θ≤m1(s,k,Z)

+(δ
I
(k)
s− , t−s

+ δ
I
(k)
s−+1, t−s − δI(k)s− , A

(k)
s−+t−s)1m1(s,k,Z)≤θ≤m2(s,k,Z)

+(2δ
I
(k)
s−+1, t−s − δI(k)s− , A

(k)
s−+t−s)1m2(s,k,Z)≤θ≤m3(s,k,Z)

and m1(s, k, Z) = b
I
(k)
s−

(A
(k)
s−)p

(I
(k)
s− )

2,0 ,

m2(s, k, Z) = b
I
(k)
s−

(A
(k)
s−)(p

(I
(k)
s− )

2,0 + p
(I

(k)
s− )

1,1 ), m3(s, k, Z) = b
I
(k)
s−

(A
(k)
s−) .

101

Deterministic model. The cell population is represented by a population density102

function ρ :=
(
ρ(j)(t, a)

)
j∈J1,JK ∈ L1(R+)J where ρ(j)(t, a) is the cell age density in103

layer j at time t. The population evolves according to the following system of partial104

differential equations:105

(3)


∂tρ

(j)(t, a) + ∂aρ
(j)(t, a) = −bj(a)ρ(j)(t, a)

ρ(j)(t, 0) = 2p
(j−1)
L

∫ ∞
0

bj−1(a)ρ(j−1)(t, a)da+ 2p
(j)
S

∫ ∞
0

bj(a)ρ(j)(t, a)da

ρ(0, a) = ρ0(a)

106
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4 F.CLÉMENT, F.ROBIN AND R.YVINEC

where ∀j ∈ J1, J − 1K, p(j)S = 1
2p

(j)
1,1 + p

(j)
2,0, p

(j)
L := 1

2p
(j)
1,1 + p

(j)
0,2, p

(0)
L = 0 and p

(J)
S = 1 .107

Here, p
(j)
S is the probability that a cell taken randomly among both daughter cells,108

remains on the same layer and p
(j)
L = 1− p(j)S is the probability that the cell moves.109

2.2. Hypotheses.110

Hypothesis 2.1. ∀j ∈ J1, J − 1K, p(j)S , p
(j)
L ∈ (0, 1)111

Hypothesis 2.2. For each layer j, bj is continuous bounded below and above:112

∀j ∈ J1, JK, ∀a ∈ R+, 0 < bj ≤ bj(a) ≤ bj <∞ .113

Definition 2.3. Bj is the distribution function of τ j (Bj(x) = 1 − e−
∫ x
0
bj(a)da)114

and dBj its density function (dBj(x) = bj(x)e−
∫ x
0
bj(a)da).115

Hypothesis/Definition 2.4. (Intrinsic growth rate) The intrinsic growth rate λj of116

layer j is the solution of117

dB∗j (λj) :=

∫ ∞
0

e−λjsdBj(s)ds =
1

2p
(j)
S

.118

Remark 2.5. dB∗j is the Laplace transform of dBj. It is a strictly decreasing func-119

tion and ]− bj ,∞[⊂ Supp(dB∗j ) ⊂]− bj ,∞[. Hence, λj > −bj. Moreover, note that120

dB∗j (0) =
∫∞
0
dBj(x)dx = 1. Thus, λj < 0 when p

(j)
S < 1

2 ; λj > 0 when p
(j)
S > 1

2 and121

λj = 0 when p
(j)
S = 1

2 . In particular, λJ > 0 as p
(J)
S = 1.122

Remark 2.6. In the classical McKendrick-VonFoerster model (one layer), the123

population grows exponentially with rate λ1 ([16], Chap. IV). The same result is124

shown for the Bellman-Harris process in [2] (Chap. VI).125

Hypothesis/Definition 2.7 (Malthus parameter). The Malthus parameter λc is126

defined as the unique maximal element taken among the intrinsic growth rates (λj,127

j ∈ J1, JK) defined in (2.4). The layer such that the index j = c is the leading layer.128

According to remark 2.5, λc is positive. We will need auxiliary hypotheses on λj129

parameters in some theorems.130

Hypothesis 2.8. All the intrinsic growth rate parameters are distinct.131

Hypothesis 2.9. ∀j ∈ J1, JK, λj > −lim inf
a→+∞

bj(a).132

Hypothesis 2.9 implies additional regularity for t 7→ e−λjtdBj(t) (see proof in SM1.1):133

Corollary 2.10. Under hypotheses 2.2, 2.4 and 2.9, ∀j ∈ J1, JK, ∀k ∈ N,134 ∫∞
0
tke−λjtdBj(t)dt <∞ .135

Stochastic initial condition. We suppose that the initial measure Z0 ∈ MP is136

deterministic. (Ft)t∈R+
is the natural filtration associated with (Zt)t∈R+

and Q.137

Deterministic initial condition. We suppose that the initial population density ρ0138

belongs to L1(R+)J .139

2.3. Notation. Let f, g ∈ L1(R+)J , we use for the scalar product:140

• on RJ+, fT (a)g(a) =
∑J
j=1 f

(j)(a)g(j)(a),141

• on L1(R+), 〈f (j), g(j)〉 =

∫ ∞
0

f (j)(a)g(j)(a)da, for j ∈ J1, JK,142

• on L1(R+)J , � f, g �=
∑J
j=1

∫∞
0
f (j)(a)g(j)(a)da.143
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 5

For a martingale M = (Mt)t≥0, we note 〈M,M〉t its quadratic variation. We also144

introduce145

B(a) = diag(b1(a), ..., bJ(a)), [K(a)]i,j =

{
2p

(j)
S bj(a), i = j, j ∈ J1, JK

2p
(j−1)
L bj−1(a), i = j − 1, j ∈ J2, JK

146

We define the primal problem (P) as147

(P)


LP ρ̂(a) = λρ̂(a), a ≥ 0

ρ̂(0) =

∫ ∞
0

K(a)ρ̂(a)da

� ρ̂,1�= 1 and ρ̂ ≥ 0

, LP ρ̂(a) = ∂aρ̂(a)−B(a)ρ̂(a),148

and the dual problem (D) is given by149

(D)

{
LDφ(a) = λφ(a), a ∈ R∗+
� ρ̂, φ�= 1 and φ ≥ 0

, LDφ(a) = ∂aφ(a)−B(a)φ+K(a)Tφ(0).150

2.4. Main results.151

2.4.1. Eigenproblem approach.152

Theorem 2.11 (Eigenproblem). Under hypotheses 2.1, 2.2, 2.4, 2.7 and 2.9,153

there exists a first eigenelement triple (λ, ρ̂, φ) solution to equations (P) and (D)154

where ρ̂ ∈ L1(R+)J and φ ∈ Cb(R+)J . In particular, λ is the Malthus parameter λc155

given in Definition 2.7, and ρ̂ and φ are unique.156

Beside the dual test function φ, we introduce other test functions to prove large-time157

convergence. Let φ̂(j), j ∈ J1, JK be a solution of158

(4) ∂aφ̂
(j)(a)− (λj + bj(a))φ̂(j)(a) = −2p

(j)
S bj(a)φ̂(j)(0), φ̂(j)(0) ∈ R∗+ .159

Theorem 2.12. Under hypotheses 2.1, 2.2, 2.4, 2.7 and 2.9, there exist polyno-160

mials (β
(j)
k )1≤k≤j≤J of degree at most j − k such that161

(5)
〈∣∣e−λctρ(j)(t, ·)− ηρ̂(j)∣∣, φ̂(j)〉 ≤

j∑
k=1

e−µjtβ
(j)
k (t)

〈∣∣ρ(k)0 − ηρ̂(k)
∣∣, φ̂(k)〉 ,162

where η :=� ρ0, φ �, µj := λc − λj > 0 when j ∈ J1, JK \ {c} and µc := bc. In163

particular, there exist a polynomial β of degree at most J−1 and constant µ such that164

�
∣∣e−λctρ(t, ·)− ηρ̂

∣∣, φ̂�≤ β(t)e−µt �
∣∣ρ0 − ηρ̂∣∣, φ̂� .165

Using martingale techniques [3], we also prove a result of convergence for the stochastic166

process Z with the dual test function φ.167

Theorem 2.13. Under hypotheses 2.1, 2.2, 2.4 and 2.7, Wφ
t = e−λct � φ,Zt �168

is a square integrable martingale that converges almost surely and in L2 to a non-de-169

generate random variable Wφ
∞.170

2.4.2. Renewal equation approach. Using generating function methods de-171

veloped for multi-type age dependent branching processes (see [2], Chap. VI), we172

write a system of renewal equations and obtain analytical formulas for the two first173

moments. We define Y
(j,a)
t := 〈Zt,1j,≤a〉 as the number of cells on layer j and of age174

This manuscript is for review purposes only.



6 F.CLÉMENT, F.ROBIN AND R.YVINEC

less or equal than a at time t, and ma
i (t) its mean starting from one mother cell of175

age 0 on layer 1:176

(6) ma
j (t) := E[Y

(j,a)
t |Z0 = δ1,0] .177

Theorem 2.14. Under hypotheses 2.1, 2.2, 2.7, 2.8 and 2.9, for all a ≥ 0,178

(7) ∀j ∈ J1, JK, ma
j (t)e−λct → m̃j(a), t→∞,179

180

181

where m̃j(a) =182 

0, j ∈ J1, c− 1K,∫ a
0
ρ̂(c)(s)ds

2p
(c)
S ρ̂(c)(0)

∫∞
0
sdBc(s)e−λcsds

, j = c,

∫ a
0
ρ̂(j)(s)ds

2p
(c)
S ρ̂(c)(0)

∫∞
0
sdBc(s)e−λcsds

c−1∏
k=1

2p
(k)
L dB∗k(λc)

1− 2p
(k)
S dB∗k(λc)

, j ∈ Jc+ 1, JK.

183

184

2.4.3. Calibration. We now consider a particular choice of the division rate:185

Hypothesis 2.15 (Age-independent division rate). ∀ (j, a) ∈ E , bj(a) = bj .186

We also consider a specific initial condition with N ∈ N∗ cells:187

Hypothesis 2.16 (First layer initial condition). Z0 = Nδ1,0.188

Then, integrating the deterministic PDE system (3) with respect to age or differenti-189

ating the renewal equation system (see (39)) on the mean number M , we obtain:190

(8)

{
d
dtM(t) = AM(t)
M(0) = (N, 0, ..., 0) ∈ RJ , [A]i,j :=

{
(2p

(j)
S − 1)bj , i = j, j ∈ J1, JK,

2p
(j−1)
L bj−1, i = j − 1, j ∈ J2, JK.

191

We prove the structural identifiability of the parameter set P := {N, bj , p(j)S , j ∈192

J1, JK} when we observe the vector M(t; P) at each time t.193

Theorem 2.17. Under hypotheses 2.1, 2.15 and 2.16 and complete observation194

of system (8), the parameter set P is identifiable.195

We then perform the estimation of the parameter set P from experimental cell number196

data retrieved on four layers and sampled at three different time points (see Table197

1a). To improve practical identifiability, we embed biological specifications used in [1]198

as a recurrence relation between successive division rates:199

(9) bj =
b1

1 + (j − 1)× α
, j ∈ J1, 4K, α ∈ R.200

We estimate the parameter set Pexp = {N, b1, α, p(1)S , p
(2)
S , p

(3)
S } using the D2D soft-201

ware [12] with an additive Gaussian noise model (see Figure 2 and Table 1b). An202

analysis of the profile likelihood estimate shows that all parameters except p
(2)
S are203

practically identifiable (see Figure SM1b).204

3. Theoretical proof and illustrations.205
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 7

Figure 2. Data fitting with model (8). Each panel illustrates the changes in the cell number
in a given layer (top-left: Layer 1, top-right: Layer 2, bottom-left: Layer 3, bottom-right: Layer 4).
The black diamonds represent the experimental data, the solid lines are the best fit solutions of (8)
and the dashed lines are drawn from the estimated variance. The parameter values (Table 1b) are
estimated according to the procedure described in section SM2.2.

3.1. Eigenproblem. We start by solving explicitly the eigenproblem (P)-(D) to206

prove theorem 2.11.207

Proof of theorem 2.11. According to definition 2.3, any solution of (P) in L1(R+)J208

is given by, ∀j ∈ J1, JK,209

(10) ρ̂(j)(a) = ρ̂(j)(0)e−λa(1− Bj)(a) .210

The boundary condition of the problem (P) gives us a system of equations for λ and211

ρ̂(j)(0), j ∈ J1, JK:212

(11) ρ̂(j)(0)× (1− 2p
(j)
S dB∗j (λ)) = 2p

(j−1)
L dB∗j−1(λ)× ρ̂(j−1)(0) .213

This system is equivalent to214

C(λ)ρ̂(0) = 0, [C(λ)]i,j =

{
1− 2p

(j)
S dB∗j (λ), i = j, j ∈ J1, JK,

2p
(j−1)
L dB∗j−1(λ), i = j − 1, j ∈ J2, JK.

215

216

Let Λ := {λj , j ∈ J1, JK}. The eigenvalues of the matrix C(λ) are 1 − 2p
(j)
S dB∗j (λ),217

j ∈ J1, JK. Thus, if λ /∈ Λ, according to hypothesis 2.4, 0 is not an eigenvalue of218

C(λ) which implies that ρ̂(0) = 0. As ρ̂ satisfies both (10) and the normalization219

� ρ̂,1�= 1, we obtain a contradiction. So, necessary λ ∈ Λ.220

We choose λ = λc the maximum element of Λ according to hypothesis 2.7. Then,221

using (11) when j = c, we have:222

ρ̂(c)(0)× (1− 2p
(c)
S dB∗c (λc)) = 2p

(c−1)
L dB∗c−1(λc)× ρ̂(c−1)(0) .223

Note that 1 − 2p
(c)
S dB∗c (λc) = 0, so ρ̂(c−1)(0) = 0 and by backward recurrence using224

(11) from j = c − 1 to 1, it comes that ρ̂(j)(0) = 0 when j < c. By hypothesis 2.7,225

max(Λ) is unique. Thus, when j > c, λj 6= λc and 1− 2p
(j)
S dB∗j (λc) 6= 0. Solving (11)226

from j = c+ 1 to J , we obtain:227

ρ̂(j)(0) = ρ̂(c)(0)×
j∏

k=c+1

2p
(k−1)
L dB∗k−1(λc)

1− 2p
(k)
S dB∗k(λc)

, ∀j ∈ Jc+ 1, JK .228
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8 F.CLÉMENT, F.ROBIN AND R.YVINEC

We deduce ρ̂(c)(0) from the normalization � ρ̂,1�= 1. Hence, ρ̂ is uniquely deter-229

mined by (10) together with the following boundary value:230

(12) ρ̂(j)(0) =



0, j ∈ J1, c− 1K,

1∑J
j=c

∫∞
0
ρ̂(j)(a)da

∏j
k=c+1

2p
(k−1)
L

dB∗
k−1

(λc)

1−2p
(k)
S

dB∗
k
(λc)

, j = c,

ρ̂(c)(0)
∏j
k=c+1

2p
(k−1)
L dB∗k−1(λc)

1−2p(k)S dB∗k(λc)
, j ∈ Jc+ 1, JK.

231

For the ODE system (D), any solution is given by, for j ∈ J1, JK,232

φ(j)(a) =

[
φ(j)(0)− 2

(
φ(j)(0)p

(j)
S + φ(j+1)(0)p

(j)
L

) ∫ a

0

e−λcsdBj(s)ds
]
e
∫ a
0
λc+bj(s)ds .233

As

∫ a

0

bj(s)e
−

∫ s
0
λc+bj(u)duds is equal to dB∗j (λc)−

∫ ∞
a

bj(s)e
−

∫ s
0
λc+bj(u)duds, we get234

235

φ(j)(a) =

[
φ(j)(0)

(
1− 2p

(j)
S dB∗j (λc) + 2p

(j)
S

∫ +∞

a

bj(s)e
−

∫ s
0
λc+bj(u)duds

)
236

−φ(j+1)(0)

(
2p

(j)
L dB∗j (λc)− 2p

(j)
L

∫ +∞

a

bj(s)e
−

∫ s
0
λc+bj(u)duds

)]
e
∫ a
0
λc+bj(s)ds .237

238

Searching for φ ∈ Cb(R+)J , it comes that239

(13) ∀j ∈ J1, JK, φ(j)(0)
(

1− 2p
(j)
S dB∗j (λc)

)
− φ(j+1)(0)2p

(j)
L dB∗j (λc) = 0 .240

According to definition 2.4, when j = c in (13) we get φ(c+1)(0) = 0. Recursively,241

φ(j)(0) = 0 when j > c. Solving (13) from j = 1 to c− 1, we get242

(14) ∀j ∈ J1, c− 1K, φ(j)(0) = φ(c)(0)×
c−1∏
k=j

2p
(k−1)
L dB∗k−1(λc)

1− 2p
(k)
S dB∗k(λc)

.243

Again, we deduce φ(c)(0) from the normalization 1 =� ρ̂, φ �= 〈ρ̂(c), φ(c)〉. Using244

corollary 2.10, we apply Fubini theorem:245

(15)

φ(c)(0) =
1

2ρ̂(c)(0)p
(c)
S

∫∞
0

( ∫ +∞
a

e−λcsdBc(s)ds
)
da

=
1

2ρ̂(c)(0)p
(c)
S

∫∞
0
se−λcsdBc(s)ds

.246

Hence, the dual function φ is uniquely determined by247

(16) φ(j)(a) = 2
[
p
(j)
S φ(j)(0) + p

(j)
L φ(j+1)(0)

] ∫ +∞

a

bj(s)e
−

∫ s
a
λc+bj(u)duds .248

together with the boundary value (14) and (15) (φ is null on the layers upstream the249

leading layer).250

From theorem 2.11, we deduce the following bounds on φ (see proof in SM1.1).251

Corollary 3.1. According to hypotheses 2.2, 2.4 and 2.7,252

(17) ∀j ∈ J1, JK,
bj

λc + bj
≤ φ(j)(a)

2[p
(j)
S φ(j)(0) + p

(j)
L φ(j+1)(0)]

≤ 1.253
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To conclude this section, we also solve the additional dual problem on isolated layers254

which is needed to obtain the large-time convergence (see proof in SM1.1).255

Lemma 3.2. According to hypotheses 2.2, 2.4 and 2.9, any solution φ̂ of (4) sat-256

isfies257

(18) ∀j ∈ J1, JK, φ̂(j)(a) = 2p
(j)
S φ̂(j)(0)

∫ +∞

a

bj(s)e
−λjs−

∫ s
a
bj(u)duds258

and, ∀a ∈ R+ ∪ {+∞},
bj

λj+bj
≤ φ̂(j)(a)

2p
(j)
S φ̂(j)(0)

< +∞ .259

In all the sequel, we fix260

(19) φ̂(c)(0) = φ(c)(0), ∀j ∈ J1, c− 1K φ̂(j)(0) = φ(j)(0) +
p
(j)
L

p
(j)
S

φ(j+1)(0).261

A first consequence is that φ̂(c) = φ(c) and moreover, from corollary 3.1 and lemma262

3.2, we have263

(20) φ(j)(a) ≤ λj + bj
bj

φ̂(j)(a) .264

3.2. Asymptotic study for the deterministic formalism. Adapting the265

method of characteristic, it is classical to construct the unique solution in266

C1
(
R+,L

1(R+)J
)

of (3) ([16], Chap. I). Let ρ the solution of (3), ρ̂ and φ given by267

theorem 2.11 and η =� ρ0, φ� . We define h as268

(21) h(t, a) = e−λctρ(t, a)− ηρ̂(a), (t, a) ∈ R+ × R+ .269

Following [7], we first show a conservation principle (see proof in SM1.1).270

Lemma 3.3 (Conservation principle). The function h satisfies the conservation
principle

� h(t, ·), φ�= 0 .

Secondly, we prove that h is solution of the following PDE system (see proof in SM1.1).271

Lemma 3.4. h is solution of272

(22)

{
∂t
∣∣h(t, a)

∣∣+ ∂a
∣∣h(t, a)

∣∣+ (λc +B(a))
∣∣h(t, a)

∣∣ = 0,∣∣h(t, 0)
∣∣ =

∣∣ ∫ +∞
0

K(a)h(t, a)da
∣∣.273

Together with the above lemmas 3.2, 3.3 and 3.4, we now prove the following key274

estimates required for the asymptotic behavior.275

Lemma 3.5. ∀j ∈ J1, JK, the component h(j) of h verifies the inequality276

(23)

∂t

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 ≤ αj−1

〈
|h(j−1)(t, ·)|, φ̂(j−1)

〉
− µj

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉+ rj(t) ,277

where α0 := 0, for j ∈ J1, JK, αj :=
p
(j)
L

p
(j)
S

bj
bj

φ̂(j+1)(0)

φ̂(j)(0)
(λj + bj) and278

µj =

{
λc − λj , j 6= c
bc, j = c

, rj(t) :=


0, j 6= c
c−1∑
j=1

λj + bj
bj

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 , j = c .
279
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Proof of lemma 3.5. Remind that p
(0)
L = 0 so that all the following computations280

are consistent with j = 1. Multiplying (22) by φ̂ and using (4), it comes for any j281  ∂t
∣∣h(j)(t, a)

∣∣φ̂(j)(a) + ∂a
∣∣h(j)(t, a)

∣∣φ̂(j)(a) = −2p
(j)
S φ̂(j)(0)bj(a)

∣∣h(j)(t, a)
∣∣+ [λj − λc]

∣∣h(j)(t, a)
∣∣φ̂(j)(a),∣∣h(j)(t, 0)

∣∣φ̂(j)(0) = φ̂(j)(0)
∣∣2p(j)S 〈

bj , h
(j)(t, ·)

〉
+ 2p

(j−1)
L

〈
bj−1, h

(j−1)(t, ·)
〉 ∣∣.(24)282

283

As ρ(t, ·) and ρ̂ belong to L1(R+)J and φ̂ is a bounded function (from lemma 3.2) we284

deduce that � h(t, ·), φ̂�<∞. Integrating (24) with respect to age, we have285
286

(25) ∂t

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 = φ̂(j)(0)
[∣∣h(j)(t, 0)

∣∣− 2p
(j)
S

〈∣∣h(j)(t, ·)∣∣, bj〉]287

+ (λj − λc)
〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 .288

289

We deal with the first term in the right hand-side of (25). When j 6= c, using first290

the boundary value in (24), a triangular inequality and lemma 3.2, we get291

φ̂(j)(0)
(∣∣h(j)(t, 0)

∣∣− 2p
(j)
S

〈∣∣h(j)(t, ·)∣∣, bj〉) ≤ 2p
(j−1)
L φ̂(j)(0)

〈∣∣h(j−1)(t, ·)∣∣, bj−1〉292

≤ αj−1

〈
|h(j−1)(t, ·)|, φ̂(j−1)

〉
.293

294

Thus, for j 6= c,295

∂t

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 ≤ αj−1

〈
|h(j−1)(t, ·)|, φ̂(j−1)

〉
− µj

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 .296

When j = c, using the boundary value in (24) and a triangular inequality, we get297
298

(26) ∂t

〈∣∣h(c)(t, ·)∣∣, φ̂(c)〉 ≤ 2p
(c)
S φ̂(c)(0)

[∣∣ 〈h(c)(t, ·), bc〉 ∣∣− 〈∣∣h(c)(t, ·)∣∣, bc〉 ]299

+ 2p
(c−1)
L φ̂(c)(0)

∣∣ 〈h(c−1)(t, ·), bc−1〉 ∣∣ .300
301

To exhibit a term
〈∣∣h(c)(t, ·)∣∣, φ̂(c)〉 in the right hand-side of (26), we need a more302

refined analysis. According to the conservation principle (lemma 3.3), for any constant303

γ (to be chosen later), we obtain304

(27)

2p
(c)
S φ̂(c)(0)

∣∣ 〈h(c)(t, ·), bc〉 ∣∣ =
∣∣2p(c)S φ̂(c)(0)

〈
h(c)(t, ·), bc

〉
− γ � h(t, ·), φ�

∣∣
≤

∣∣ 〈h(c)(t, ·), 2p(c)S φ̂(c)(0)bc − γφ(c)
〉 ∣∣+ γ

∑c−1
j=1

〈∣∣h(j)(t, ·)∣∣, φ(j)〉 .305

where we used a triangular inequality in the latter estimate. Moreover, according to306

(20), we have307

(28) ∀j ∈ J1, c− 1K,
〈∣∣h(j)(t, ·)∣∣, φ(j)〉 ≤ λj + bj

bj

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 ,308

and according to corollary 3.1,309

(29) φ(c)(a) ≤
2p

(c)
S φ(c)(0)

bc
bc(a).310

We want to find at least one constant γ such that for all a ≥ 0 , 2p
(c)
S φ̂(c)(0)bc(a)−311

γφ(c)(a) > 0. From (29), we choose γ = bc, and deduce from (27) and (28)312

(30)
2p

(c)
S φ̂c(0)

∣∣ 〈h(c)(t, ·), bc〉 ∣∣ ≤ 2p
(c)
S φ̂(c)(0)

〈∣∣h(c)(t, ·)∣∣, bc〉− bc 〈∣∣h(c)(t, ·)∣∣, φ(c)〉
+ bc

∑c−1
j=1

λj+bj
bj

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 .313
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As before, using lemma 3.2, we obtain314

2p
(c−1)
L φ̂(c)(0)

∣∣ 〈h(c−1)(t, ·), bc−1〉 ∣∣ ≤ αc−1 〈∣∣h(c−1)(t, ·)∣∣, φ̂(c−1)〉 .315

Combining the latter inequality with (30) and (26), we deduce (23) for j = c.316

We now have all the elements to prove theorem 2.12.317

Proof of theorem 2.12. We proceed by recurrence from the index j = 1 to J . For318

j = 1, we can apply Gronwall lemma in inequality (23) to get319

〈
|h(1)(t, ·)|, φ̂(1)

〉
≤e−µ1t

〈
|h(1)(0, ·)|, φ̂(1)

〉
.320

We suppose that for a fixed 2 ≤ j ≤ J and for all ranks 1 ≤ i ≤ j − 1, there exist321

polynomials β
(i)
k , k ∈ J1, iK, of degree at most i− k such that322

〈
|h(i)(t, ·)|, φ̂(i)

〉
≤

i∑
k=1

β
(i)
k (t)e−µkt

〈
|h(k)(0, ·)|, φ̂(k)

〉
.(31)323

324

Applying this recurrence hypothesis in inequality (23) for j, there exist polynomials325

β̃
(j)
k (t) for k ∈ J1, j − 1K (same degree than β

(j−1)
k (t) ):326

∂t

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 ≤ j−1∑
k=1

β̃
(j)
k (t)e−µkt

〈
|h(k)(0, ·)|, φ̂(k)

〉
− µj

〈∣∣h(j)(t, ·)∣∣, φ̂(j)〉 .327

We get from a modified version of Gronwall lemma (see lemma SM1.1):328

〈
|h(j)(t, ·)|, φ̂(j)

〉
≤

j∑
k=1

β
(j)
k (t)e−µkt

〈
|h(k)(0, ·)|, φ̂(k)

〉
.329

where β
(j)
j is a constant and for k ∈ J1, j − 1K, β(j)

k is a polynomial of degree at most330

(j − 1− k) + 1 = j − k (the degree only increases by 1 when µk = µj). This achieves331

the recurrence.332

3.3. Asymptotic study of the martingale problem. The existence and333

uniqueness of the SDE (2) is proved in a more general context than ours in [15].334

Following the approach proposed in [15], we first derive the generator of the process335

Z solution of (2). In this part, we consider F ∈ C1(R+,R+) and f ∈ C1b (E ,R+).336

Theorem 3.6 (Infinitesimal generator of (Zt)). Under hypotheses 2.1 and 2.2,337

the process Z defined in (2) and starting from Z0 is a Markovian process in the Skhorod338

space D([0, T ],MP (J1, JK× R+)). Let T > 0, Z satisfies339

(32) E
[

sup
t≤T

Nt
]
<∞, E

[
sup
t≤T
� a, Zt �

]
<∞,340
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12 F.CLÉMENT, F.ROBIN AND R.YVINEC

and its infinitesimal generator is341

GF
[
� f, Z �

]
=� F ′[� Z, f � ]∂af, Z �

+

J∑
j=1

∫ ∞
0

(
F
[
� f, 2δj,0 − δj,a + Z �

]
− F

[
� f, Z �

])
p
(j)
2,0bj(a)Z(dj, da)

+
J∑
j=1

∫ ∞
0

(
F
[
� f, δj,0 + δj+1,0 − δj,a + Z �

]
− F

[
� f, Z �

])
p
(j)
1,1bj(a)Z(dj, da)

+

J∑
j=1

∫ ∞
0

(
F
[
� f, 2δj+1,0 − δj,a + Z �

]
− F

[
� f, Z �

])
p
(j)
0,2bj(a)Z(dj, da) .

342

From this theorem, we derive the following Dynkin formula :343

Lemma 3.7 (Dynkin formula). Let T > 0. Under hypotheses 2.1 and 2.2, ∀t ∈344

[0, T ],345

F [� f, Zt � ] = F [� f, Z0 � ] +

∫ t

0

GF [� f, Zs � ]ds+MF,f
t346

where MF,f is a martingale. Moreover,347

(33) � f, Zt �=� f, Z0 � +

∫ t

0

� LDf, Zs � ds+Mf
t348

where LD the dual operator in (D) and Mf is a L2−martingale defined by349
(34)

Mf
t =

∫ t

0
� B(·)f(·)−K(·)T f(0), Zs � ds

+

∫ ∫
[0,t]×E

1k≤N
s−
� f, 2δ

I
(k)

s−
,0
− δ

I
(k)

s−
,A

(k)

s−
� 10≤θ≤m1(s,k,Z)Q(ds, dk, dθ)

+

∫ ∫
[0,t]×E

1k≤N
s−
� f, δ

I
(k)

s−
,0

+ δ
I
(k)

s−
+1,0

− δ
I
(k)

s−
,A

(k)

s−
� 1m1(s,k,Z)≤θ≤m2(s,k,Z)Q(ds, dk, dθ)

+

∫ ∫
[0,t]×E

1k≤N
s−
� f, 2δ

I
(k)

s−
+1,0

− δ
I
(k)

s−
,A

(k)

s−
� 1m2(s,k,Z)≤θ≤m3(s,k,Z)Q(ds, dk, dθ)

350

and351

(35)

〈
Mf ,Mf

〉
t

=

∫ t

0

[ J∑
j=1

∫
R+

[� f, 2δj,0 − δj,a � ]2bj(a)p
(j)
2,0Zs(dj, da)

+
J∑
j=1

∫
R+

[� f, δj,0 + δj+1,0 − δj,a � ]2bj(a)p
(j)
1,1Zs(dj, da)

+
J∑
j=1

∫
R+

[� f, 2δj+1,0 − δj,a � ]2bj(a)p
(j)
0,2Zs(dj, da)

]
ds .

352

The proofs of theorem 3.6 and lemma 3.7 are classical and provided in SM1.2 for353

reader convenience. We now have all the elements to prove theorem 2.13.354

Proof of theorem 2.13. We apply the Dynkin formula (33) with the dual test func-355

tion φ and obtain � φ,Zt �=� φ,Z0 � +λc

∫ t

0

� φ,Zs � ds + Mφ
t . As φ is356

bounded, � φ,Zt � has finite expectation for all time t according to (32). Thus,357

(36) E
[
� φ,Zt �

]
= E

[
� φ,Z0 �

]
+ λcE

[ ∫ t

0

� φ,Zs � ds
]
.358
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Using Fubini theorem and solving equation (36), we obtain:359

E
[
� φ,Zt �

]
= eλctE

[
� φ,Z0 �

]
⇒ E

[
e−λct � φ,Zt �

]
= E

[
� φ,Z0 �

]
.360

Hence, Wφ
t = e−λct � φ,Zt � is a martingale. According to martingale convergence361

theorems (see Theorem 7.11 in [4]), Wφ
t converges to an integrable random variable362

Wφ
∞ ≥ 0, P−p.s. when t goes to infinity. To prove that Wφ

∞ is non-degenerated,363

we will show that the convergence holds in L2. Indeed, from the L2 and almost364

sure convergence, we deduce the L1 convergence. Then, applying the dominated365

convergence theorem, we have:366

E[Wφ
∞] := E[ lim

t→∞
Wφ
t ] = lim

t→∞
E[Wφ

t ] = E[Wφ
0 ] > 0.367

Consequently, Wφ
∞ is non-degenerated. To show the L2 convergence, we compute the368

quadratic variation of Wφ. Applying Ito formula (see [10] p. 78-81) with F (t,�369

φ,Zt � ) = e−λct � φ,Zt � , we deduce:370

Wφ
t =� φ,Z0 � +

∫ t

0

[ ∫
E
e−λcs(∂aφ

(j)(a)− λcφ(j)(a))Zs(dj, da)
]
ds

+

∫ ∫
[0,t]×E

1k≤N
s−
e−λcs � φ, 2δ

I
(k)

s−
,0
− δ

I
(k)

s−
,A

(k)

s−
� 10≤θ≤m1(s,k,Z)Q(ds, dk, dθ)

+

∫ ∫
[0,t]×E

1k≤N
s−
e−λcs � φ, δ

I
(k)

s−
,0

+ δ
I
(k)

s−
+1,0

− δ
I
(k)

s−
,A

(k)

s−
� 1m1(s,k,Z)≤θ≤m2(s,k,Z)Q(ds, dk, dθ)

+

∫ ∫
[0,t]×E

1k≤N
s−
e−λcs � φ, 2δ

I
(k)

s−
+1,0

− δ
I
(k)

s−
,A

(k)

s−
� 1m2(s,k,Z)≤θ≤m3(s,k,Z)Q(ds, dk, dθ) .

371

As LDφ = λcφ, we have372 ∫
E
(∂aφ

(j)(a)− λcφ(j)(a))Zs(dj, da) =� B(·)φ(·)−KT (·)φ(0), Zs � .373
374

Consequently, from (34), we deduce375

(37) Wφ
t =� φ,Z0 � +

∫ t

0

e−λcsdMφ
s .376

where dMφ
s is defined as Mφ

t =

∫ t

0

dMφ
s . According to (35) and (37), we get377

378 〈
Wφ
· ,W

φ
·
〉
t

=

∫ t

0

e−2λcsd
〈
Mφ,Mφ

〉
s
ds379

=

∫ t

0

e−2λcs
[∫
E

(
p
(j)
2,0[� φ, 2δj,0 − δj,a � ]2 + p

(j)
1,1[� φ, δj,0 + δj+1,0 − δj,a � ]2380

+p
(j)
0,2[� φ, 2δj+1,0 − δj,a � ]2

)
bj(a)Zs(dj, da)

]
ds .381

382

Since, φ and b are bounded, there exists a constant K > 0 such that383

〈
Wφ,Wφ

〉
t
≤ K

∫ t

0

e−2λcs
[∫
E
Zs(dj, da)

]
ds .384

Taking the expectation and using moment estimate (32), we get E[〈Wφ,Wφ〉t] <∞.385

Thanks to the Burkholder-Davis-Gundy inequality (see Theorem 48, [10]), we deduce386

that E[supt≤T

(
Wφ
t

)2
] <∞, and thus the L2 convergence of Wφ.387
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3.4. Asymptotic study of the renewal equations. We now turn to the study388

of renewal equations associated with the branching process Z. Following [2] (Chap.389

VI), we introduce generating functions that determine the cell moments. In all this390

subsection, we consider a ∈ R+ ∪ {+∞}. We recall that Y
(j,a)
t = 〈Zt,1j1≤a〉 and391

Y at = (Y
(j,a)
t )j∈J1,JK. For s = (s1, ..., sJ) ∈ RJ and j = (j1, ..., jJ) ∈ NJ , we use392

classical vector notation sj =
∏J
i=1 s

ji
i .393

Definition 3.8. We define F a[s; t] = (F (i,a)[s; t])i∈J1,JK where F (i,a) is the gen-
erating function associated with Y at starting with Z0 = δi,0:

F (i,a)[s; t] := E[sY
a
t |Z0 = δi,0] .

We obtain a system of renewal equations for F and394

Ma(t) := (E[Y
(j,a)
t |Z0 = δi,0])i,j∈J1,JK.395

Lemma 3.9 (Renewal equations for F ). For i ∈ J1, JK, F (i,a) satisfies:396

(38) ∀i ∈ J1, JK, F (i,a)[s; t] = (si1t≤a + 1t>a)(1− Bi(t)) + f (i)(F a[s, .]) ∗ dBi(t)397

where f (i) is given by f (i)(s) := p
(i)
2,0s

2
i + p

(i)
1,1sisi+1 + p

(i)
0,2s

2
i+1.398

Lemma 3.10 (Renewal equations for M). For (i, j) ∈ J1, JK2, Ma
i,j satisfies:399

(39) Ma
i,j(t) = δi,j(1− Bi(t))1t≤a + 2p

(i)
S Ma

i,j ∗ dBi(t) + 2p
(i)
L Ma

i+1,j ∗ dBi(t) .400

The proofs of lemma 3.9 and 3.10 are given in SM1.2.401

Theorem 3.11. Under hypotheses 2.1, 2.2, 2.7, 2.8 and 2.9,402

(40) ∀i ∈ J1, JK, ∀k ∈ J0, J − iK, Ma
i,i+k(t) ∼ M̃i,i+k(a)eλi,i+kt, t→∞403

where λi,i+k = max
j∈Ji,i+kK

λj,404

(41) M̃i,i(a) =

∫ a
0

(1− Bi(t))e−λitdt
2p

(i)
S

∫∞
0
tdBi(t)e−λitdt

405

and, for k ∈ J1, J − iK406

(42)

M̃i,i+k(a) =



2p
(i)
L dB∗i (λi,i+k)

1− 2p
(i)
S dB∗i (λi,i+k)

M̃i+1,i+k(a), if λi,i+k 6= λi (i)

2p
(i)
L dB∗i (λi)

2p
(i)
S

∫∞
0
tdBi(t)e−λitdt

∫ ∞
0

Ma
i+1,i+k(t)e−λitdt, if λi,i+k = λi(ii).

407

Proof. Let the mother cell index i ∈ J1, JK. As no daughter cell can move up-408

stream to its mother layer, the mean number of cells on layer j < i is null (for all409

t ≥ 0 and for j < i, Ma
i,j(t) = 0). We consider the layers downstream the mother one410

(j ≥ i) and proceed by recurrence:411

Hk : ∀i ∈ J1, J − kK, Ma
i,i+k(t) ∼ M̃i,i+k(a)eλi,i+kt, as t→∞ .412
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We first deal with H0. We consider the solution of (39) for j = i:413

(43) ∀t ∈ R+, Ma
i,i(t) = (1− Bi(t))1t≤a + 2p

(i)
S Ma

i,i ∗ dBi(t) .414

We recognize a renewal equation as presented in [2](p.161, eq.(1)) for Mi,i, which is415

similar to a single type age-dependent process. The main results on renewal equations416

are recalled in SM1.3. Here, the mean number of children is m = 2p
(i)
S > 0 and the417

life time distribution is Bi. From hypothesis 2.2, we have418 ∫ ∞
0

(1− Bi(t))1t≤ae−λitdt ≤
1

b̄i

∫ ∞
0

1t≤adBi(t)e−λitdt ≤
1

b̄i

∫ ∞
0

dBi(t)e−λitdt <∞419

according to hypothesis 2.4. Thus, t 7→ 1t≤a (1− Bi(t)) e−λit is in L1(R+). Using420

hypotheses 2.4 and 2.9, we apply corollary 2.10 and lemma SM1.4 (see lemma 2 of421

[2],p.161) and obtain:422

Ma
i,i(t) ∼ M̃i,i(a)eλit, as t→∞, where M̃i,i(a) =

∫ a
0

(1− Bi(t))e−λitdt
2p

(i)
S

∫∞
0
tdBi(t)e−λitdt

.423

Hence, H0 is verified. We then suppose that Hk−1 is true for a given rank k − 1 ≥ 0424

and consider the next rank k. According to (39), Ma
i,i+k is a solution of the equation:425

(44) Ma
i,i+k(t) = 2p

(i)
S Ma

i,i+k ∗ dBi(t) + 2p
(i)
L Ma

i+1,i+k ∗ dBi(t) .426

We distinguish two cases : λi,i+k 6= λi and λi,i+k = λi. We first consider λi,i+k = λi427

and show that f(t) = Ma
i+1,i+k ∗ dBi(t)e−λit belongs to L1(R+). Let R > 0. Using428

Fubini theorem, we deduce that:429 ∫ R

0

f(t)dt =

∫ R

0

[∫ R

u

e−λi(t−u)Ma
i+1,i+k(t− u)dt

]
e−λiudBi(u)du .430

Applying a change of variable and using that Ma
i+1,i+k(t) ≥ 0 for all t ≥ 0, we have:431 ∫ R

u

e−λi(t−u)Ma
i+1,i+k(t− u)dt ≤

∫ R

0

e−λitMa
i+1,i+k(t)dt .432

According to Hk, we know that Ma
i+1,i+k(t) ∼ M̃i+1,i+k(a)eλi+1,i+kt as t→∞. Then,433

434 ∫ R

0

e−λitMa
i+1,i+k(t)dt =

∫ R

0

e−λi+1,i+ktMa
i+1,i+k(t)e−(λi−λi+1,i+k)tdt435

≤ K
∫ R

0

e−(λi−λi+1,i+k)tdt <∞436
437

when R → ∞, as λi = λi,i+k > λi+1,i+k. Moreover,
∫ R
0
e−λiudBi(u)du ≤ dB∗i (λi) <438

∞ according to hypothesis 2.7. Finally, we obtain an estimate for
∫ R
0
f(t)dt that439

does not depend on R. So, f is integrable. We can apply lemma SM1.4 and deduce440

Ma
i,i+k(t) ∼ M̃i,i+k(a)eλi,i+kt, as t→∞, with M̃i,i+k(a) given in (42)(ii).441

We now consider the case λi,i+k 6= λi and introduce the following notations :442

M̂a
i,i+k(t) = Ma

i,i+k(t)e−λi,i+kt, d̂Bi(t) =
dBi(t)

dB∗i (λi,i+k)
e−λi,i+kt .443

This manuscript is for review purposes only.
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In this case, λi,i+k > λi, so that 2p
(i)
S dB∗i (λi,i+k) < 2p

(i)
S dB∗i (λi) = 1. We want to444

apply lemma SM1.5 (see lemma 4 of [2], p.163). We rescale (44) by e−λi,i+kt and445

obtain the following renewal equation for M̂a
i,i+1:446

M̂a
i,i+k(t) = 2p

(i)
S dB∗i (λi,i+k)M̂a

i,i+k ∗ d̂Bi(t) + 2p
(i)
L Ma

i+1,i+k ∗ dBi(t)e−λi,i+kt .447

We compute the limit of f(t) = Ma
i+1,i+k ∗ dBi(t)e−λi,i+kt:448

f(t) =

∫ ∞
0

1[0,t](u)Ma
i+1,i+k(t− u)e−λi,i+k(t−u)e−λi,i+kudBi(u)du .449

According to Hk−1, Ma
i+1,i+k(t) ∼ e−λi+1,i+ktM̃i+1,i+k(a). As λi,i+k 6= λi, we have450

λi,i+k = λi+1,i+k. Hence, Ma
i+1,i+k(t)e−λi,i+kt is dominated by a constant K such451

that
∫∞
0
Ke−λi,i+kudBi(u)du < ∞. We apply the Lebesgue dominated convergence452

theorem and obtain lim
t→∞

f(t) = M̃i+1,i+k(a)dB∗i (λi,i+k). Applying lemma SM1.5, we453

obtain that:454

lim
t→∞

M̂a
i,i+k(t) =

2p
(i)
L M̃i+1,i+k(a)dB∗i (λi,i+k)

1− 2p
(i)
S dB∗i (λi,i+k)

= M̃i,i+k(a),455

and the recurrence is proved.456

We have now all the elements to prove theorem 2.14.457

Proof of theorem 2.14. According to theorem 3.11, we have:458

(45) ∀j ∈ J1, JK, ma
j (t) ∼ M̃1,j(a)eλ1,jt, as t→∞.459

When j < c, we deduce directly from (45) that m̃j(a) = 0. We then consider the460

leading layer j = c. For k ∈ J1, c − 1K, λk,c 6= λk so, M̃k,c(a) is related to M̃k+1,c(a)461

by (42)(i). Thus, we obtain:462

(46) m̃c(a) =

c−1∏
m=1

2p
(m)
L dB∗m(λc)

1− 2p
(m)
S (dB∗m)(λc)

M̃c,c(a) .463

M̃c,c(a) is given by (41) and we deduce m̃c(a). We turn to the layers j > c. For464

k ∈ J1, c− 1K, we have λc = λk,j 6= λk. We obtain from (42)(i)465

(47) m̃j(a) =

c−1∏
m=1

2p
(m)
L dB∗m(λc)

1− 2p
(m)
S (dB∗m)(λc)

M̃c,j(a).466

Then, as λc = λc,j , we use (42)(ii) and obtain:467

(48) M̃c,j(a) =
2p

(c)
L dB∗c (λc)

2p
(c)
S

∫∞
0
te−λctdBc(t)dt

∫ ∞
0

Ma
c+1,j(t)e

−λctdt.468

Then, we apply the Laplace transform to (39) for α = λc. Theorem 3.11 and the fact469

that λc = λc,j guarantee that we can apply the Laplace transform to (39) (see details470

in SM1.3). We obtain:471
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(49)∫ ∞
0

Ma
c+1,j(t)e

−λctdt =

j−1∏
k=c+1

2p
(k)
L dB∗k(λc)

1− 2p
(k)
S dB∗k(λc)

×
∫ a
0
ρ̂(j)(s)ds

(1− 2p
(j)
S dB∗j (λc))× ρ̂(j)(0)

.472

Combining (47), (48) and (49) and the value of ρ̂(j)(0) given in (12), we obtain m̃j(a).473

We also study the asymptotic behavior of the second moment in SM1.3 (see474

theorem SM1.8).475

Remark 3.12. These results can be extended in a case when the mother cell is476

not necessary of age 0 (for the one layer case, see [2], p.153).477

Remark 3.13. Using the same procedure as in theorem 3.11, we can obtain a bet-478

ter estimate for the convergence of the deterministic solution ρ than that in theorem479

2.12. Indeed, we can consider the study of h(t, x) = e−λ1,jtρ(t, x) − ηρ̂1,j(x) where480

ρ̂1,j is the eigenvector of the sub-system composed of the j-th first layer, and find the481

proper function φ1,j .482

3.5. Numerical illustration. We perform a numerical illustration with age483

independent division rates (which satisfy hypothesis 2.2). Figure 3a illustrates the484

exponential growth of the number of cells, either for the original solution of the model485

(2) (left panel) or the renormalized solution (right panel), checking the results given486

in theorems 2.14 and SM1.8. Figure 3b instantiates the effect of the parameters b1487

and p
(1)
S on the leading layer (left panel) and the asymptotic proportion of cells (right488

panel). Note that the layer with the highest number of cells is not necessary the leading489

one. As can be seen in Figure 4, the renormalized solutions of the SDE (2) and PDE490

(3) match the stable age distribution ρ̂ (see theorems 2.11 and 2.14). Asymptotically,491

the age distribution decreases with age, which corresponds to a proliferating pool of492

young cells, and is consistent with the fact that ρ̂(j) is proportional to e−λcaP[τ (j) > a].493

The convergence speeds differ between layers (here, the leading layer is the first one494

and the stable state of each layer is reached sequentially), corroborating the inequality495

given in theorem 2.12.496

4. Parameter calibration. Throughout this part, we will work under hypothe-497

ses 2.1, 2.15 and 2.16. As a consequence, the intrinsic growth rate per layer can be498

computed easily:499

(50) λj = (2p
(j)
S − 1)bj ∈]− bj , bj [,when j < J .500

4.1. Structural identifiability. We prove here the structural identifiability of501

our system following [8]. We start by a technical lemma.502

Lemma 4.1. Let M be the solution of (8). For any linear application U : RJ →503

RJ , we have [∀t,M(t) ∈ ker(U)]⇒ [U = 0].504

Proof. Ad absurdum, if U 6= 0 and M(t) ∈ ker(U), for all t, then there exists a505

non-zero vector u := (u1, ..., uJ) such that for all t, uTM(t) = 0. This last relation,506

evaluated at t = 0 and thanks to the initial condition of (8), implies u1 = 0. Then,507

derivating M , solution of (8), we obtain:508

d

dt

J∑
j=2

ujM
(j)(t) = 0⇒

J∑
j=2

uj [(bj−1 − λj−1)M (j−1)(t) + λjM
(j)(t)] = 0 .509

510
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18 F.CLÉMENT, F.ROBIN AND R.YVINEC

(a) Exponential growth and asymptotic behavior

(b) Leading layer index and asymptotic proportion of
cells

Figure 3. Exponential growth and asymptotic moments. Figure 3a: Outputs of 1000 sim-

ulations of the SDE (2) according to the algorithm SM1 with p
(j)
S , bj given in Figure 1b, p

(j)
1,1 = 0

and Z0 = 155δ1,0. Left panel: the solid color lines correspond to the outputs of the stochastic
simulations while the black stars correspond to the numerical solutions of the ODE (8) with the
initial number of cells on the first layer N = 155 (orange: Layer 1, red: Layer 2, green: Layer 3,
blue: Layer 4). Right panel: the color solid lines correspond to the renormalization of the outputs
of the stochastic simulations by e−λct. The black stars are the numerical solutions of the ODE (8).
The color and black dashed lines correspond to the empirical means of the simulations and the ana-
lytical asymptotic means (155m̃j(∞), theorem 2.14), respectively. The color and black dotted lines

represent the empirical and analytical asymptotic 95% confidence intervals (1.96
√
vj(∞), corollary

SM1.10), respectively. Figure 3b: Leading layer index as a function of b1 and p
(1)
S (left panel) and

proportion of cells per layer in asymptotic regime with respect to p
(1)
S (right panel). In both panels,

b satisfies (9) and p
(j)
S = −15 ∗ p(1)L ∗ (j − 1)2 − 110 ∗ p(1)L ∗ (j − 1) + p

(1)
S .

Again, at t = 0, we obtain u2(b1 − λ1) = 0. Because λ1 6= b1, u2 = 0. Iteratively,511

∀j ∈ J2, JK, uj

j−1∏
k=1

(bk−1 − λk−1) = 0 ⇒ uj = 0 .512

513

We obtain a contradiction.514

We can now prove theorem 2.17.515

Proof of theorem 2.17. According to [8], the system (8) is P-identifiable if, for516

two sets of parameters P and P̃, M(t; P) = M(t; P̃) implies that P = P̃.517

∀t ≥ 0,M(t; P) = M(t; P̃)⇒ d

dt
M(t; P) =

d

dt
M(t; P̃)518

⇒ APM(t; P) = AP̃M(t; P̃) = AP̃M(t; P)519

⇒ (AP −AP̃)M(t; P) = 0520521
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Figure 4. Stable age distribution per layer. Age distribution at different times of one
simulation of the SDE (2) and of the PDE (3) using the algorithms described in respectively SM1
and SM2.0.2. We use the same parameters as in Figure 3. From top to bottom: t = 5, 25, 50 and
100 days. The color bars represent the normalized stochastic distributions. The black dashed lines
correspond to the normalized PDE distributions, the color solid lines to the stable age distributions
ρ̂(j), j ∈ J1, 4K. The details of the normalization of each lines are provided in SM2.1.

So, M(t; P) ∈ ker(AP −AP̃) and, from lemma 4.1, we deduce that AP = AP̃. Thus,522 {
(2p

(j)
S − 1)bj = (2p̃

(j)
S − 1)̃bj , ∀j ∈ J1, JK,

2p
(j)
L bj = 2p̃

(j)
L b̃j , ∀j ∈ J1, J − 1K.

523

Using that p
(j)
L = 1− p(j)S and hypothesis 2.1, we deduce P = P̃.524

4.2. Biological application. We now consider the application to the develop-525

ment of ovarian follicles.526

4.2.1. Biological background. The ovarian follicles are the basic anatomical527

and functional units of the ovaries. Structurally, an ovarian follicle is composed of a528

germ cell, named oocyte, surrounded by somatic cells (see Figure 5). In the first stages529

of their development, ovarian follicles grow in a compact way, due to the proliferation530

of somatic cells and their organization into successive concentric layers starting from531

one layer at growth initiation up to four layers.

Figure 5. Histological sections of ovarian follicles in the compact growth phase. Left
panel: one-layer follicle, center panel: three-layer follicle, right panel: four-layer follicle. Courtesy
of Danielle Monniaux.

532

4.2.2. Dataset description. We dispose of a dataset providing us with mor-533

phological information at different development stages (oocyte and follicle diameter,534

total number of cells), and acquired from ex vivo measurements in sheep fetus [5]. In535

addition, from [14, 13], we can infer the transit times between these stages: it takes536

15 days to go from one to three layers and 10 days from three to four layers. Hence537

(see Table 1a), the dataset consists of the total numbers of somatic cells at three time538

points.539
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t = 0 t = 20 t = 35
Data points (62) 34 10 18
Total cell num-
ber

113.89 ±
57.76

885.75 ±
380.89

2241.75 ±
786.26

Oocyte diameter
(µm)

49.31 ±
8.15

75.94 ±
10.89

88.08 ±
7.43

Follicle diameter
(µm)

71.68 ±
13.36

141.59 ±
17.11

195.36 ±
23.95

(a) Summary of the dataset

Layer j p
(j)
S bj λj

1 0.6806 0.1146 0.0414
2 0.4837 0.0435 -0.0014
3 0.9025 0.0354 0.0285

4 1 0.0324 0.0324

(b) Estimated values of the parame-
ters.

Table 1
Experimental dataset and estimated values of the parameters. Table 1b. The estimated

value of α and the initial number of cells are respectively α = 1.633 and N ≈ 155 . For j ≥ 2,
the bj parameter values (in blue) were computed using formula (9). The λj values were computed
using formula (50). The 95%-confidence intervals are b1 ∈ [0.0760; 0.1528], α ∈ [0.0231; 5.685],

N ∈ [126.4; 185.4], p
(1)
S ∈ [0.6394; 0.7643], p

(2)
S ∈ [0; 0.7914[ and p

(3)
S ∈ [0.6675; 0.9739].

We next take advantage of the spheroidal geometry and compact structure of540

ovarian follicles to obtain the number of somatic cells in each layer. Spherical cells541

are distributed around a spherical oocyte by filling identical width layers one after542

another, starting from the closest layer to the oocyte. Knowing the oocyte and somatic543

cell diameter (respectively dO and ds) and, the total number of cells Nexp, we compute544

the number of cells on the jth layer according to the ratio between its volume V j and545

the volume of a somatic cell V s:546

Initialization: j ← 1, V s ← πd3s
6 , N ← Nexp547

While N > 0 :548

V j ← π
6

[
(dO + 2 ∗ j ∗ ds)3 − (dO + 2 ∗ (j − 1) ∗ ds)3

]
549

Nj ← min(V
j

V s , N), N ← N −Nj , j ← j + 1550

J ← j − 1551

The corresponding dataset is shown on the four panels of Figure 2.552

4.2.3. Parameter estimation. Before performing parameter estimation, we553

take into account additional biological specifications on the division rates. The oocyte554

produces growth factors whose diffusion leads to a decreasing gradient of proliferat-555

ing chemical signals along the concentric layers, which results to the recurrence law556

(9) similar as that initially proposed in [1]. Considering a regression model with an557

additive gaussian noise, we estimate the model parameters to fit the changes in cell558

numbers in each layer (see SM2.2 for details). The estimated parameters are provided559

in Table 1b and the fitting curves are shown in Figure 2. We compute the profil likeli-560

hood estimates [11] and observe that all parameters are practically identifiable except561

p
(2)
S (Figure SM1a ). In contrast, when we perform the same estimation procedure562

on the total cell numbers, most of the parameters are not practicality identifiable563

(dataset in Table 1a, see detailed explanations in SM2.2).564

5. Conclusion. In this work, we have analyzed a multi-type age-dependent565

model for cell populations subject to unidirectional motion, in both a stochastic and566

deterministic framework. Despite the non-applicability of either the Perron-Frobenius567

or Krein-Rutman theorem, we have taken advantage of the asymmetric transitions be-568

tween different types to characterize long time behavior as an exponential Malthus569

growth, and obtain explicit analytical formulas for the asymptotic cell number mo-570

ments and stable age distribution. We have illustrated our results numerically, and571
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studied the influence of the parameters on the asymptotic proportion of cells, Malthus572

parameter and stable age distribution. We have applied our results to a morphody-573

namic process occurring during the development of ovarian follicles. The fitting of the574

model outputs to biological experimental data has enabled us to represent the com-575

pact phase of follicle growth. Thanks to the flexibility allowed by the expression of576

morphodynamic laws in the model, we intend to consider other non-compact growth577

stages.578
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