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ANALYSIS AND CALIBRATION OF A LINEAR MODEL FOR
STRUCTURED CELL POPULATIONS WITH UNIDIRECTIONAL
MOTION : APPLICATION TO THE MORPHOGENESIS OF
OVARIAN FOLLICLES*

FREDERIQUE CLEMENT f, FREDERIQUE ROBIN ¥, AND ROMAIN YVINEC §

Abstract. We analyze a multi-type age dependent model for cell populations subject to uni-
directional motion, in both a stochastic and deterministic framework. Cells are distributed into
successive layers; they may divide and move irreversibly from one layer to the next. We adapt re-
sults on the large-time convergence of PDE systems and branching processes to our context, where
the Perron-Frobenius or Krein-Rutman theorem can not be applied. We derive explicit analytical
formulas for the asymptotic cell number moments, and the stable age distribution. We illustrate
these results numerically and we apply them to the study of the morphodynamics of ovarian folli-
cles. We prove the structural parameter identifiability of our model in the case of age independent
division rates. Using a set of experimental biological data, we estimate the model parameters to fit
the changes in the cell numbers in each layer during the early stages of follicle development.

Key words. structured cell populations, multi-type age dependent branching processes, renewal
equations, McKendrick-VonFoerster model, parameter calibration, structural identifiability

AMS subject classifications. 35165, 60K15, 60J80, 92D25

1. Introduction. We study a multi-type age dependent model in both a de-
terministic and stochastic framework to represent the dynamics of a population of
cells distributed into successive layers. The model is a two dimensional structured
model: cells are described by a continuous age variable and a discrete layer index
variable. Cells may divide and move irreversibly from one layer to the next. The cell
division rate is age and layer dependent, and is assumed to be bounded below and
above. After division, the age is reset and the daughter cells either remain within
the same layer or move to the next one. In its stochastic formulation, our model is a
multi-type Bellman-Harris branching process and in its deterministic formulation, it
is a multi-type McKendrick-VonFoerster system.

The model enters the general class of linear models leading to Malthusian expo-
nential growth of the population. In the PDE case, state-of-the-art-methods call to
renewal equations system [6] or, to an eigenvalue problem and general relative entropy
techniques [7, 9] to show the existence of an attractive stable age distribution. Yet,
in our case, the unidirectional motion prevents us from applying the Krein-Rutman
theorem to solve the eigenvalue problem. As a consequence, we follow a constructive
approach and explicitly solve the eigenvalue problem. On the other hand, we adapt
entropy methods using weak convergences in L! to obtain the large-time behavior
and lower bound estimates of the speed of convergence towards the stable age dis-
tribution. In the probabilistic case, classical methods rely on renewal equations [2]
and martingale convergences [3]. Using the same eigenvalue problem as in the deter-
ministic study, we derive a martingale convergence giving insight into the large-time
fluctuations around the stable state. Again, due to the lack of reversibility in our
model, we cannot apply the Perron-Frobenius theorem to study the asymptotic of
the renewal equations. Nevertheless, we manage to derive explicitly the stationary
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2 F.CLEMENT, F.ROBIN AND R.YVINEC

solution of the renewal equations for the cell number moments in each layer as in [2].
We recover the deterministic stable age distribution as the solution of the renewal
equation for the mean age distribution.

The theoretical analysis of our model highlights the role of one particular layer:
the leading layer characterized by a maximal intrinsic growth rate which turns out
to be the Malthus parameter of the total population. The notion of a leading layer
is a tool to understand qualitatively the asymptotic cell dynamics, which appears to
operate in a multi-scale regime. All the layers upstream the leading one may extinct
or grow with a rate strictly inferior to the Malthus parameter, while the remaining,
downstream ones are driven by the leading layer.

We then check and illustrate numerically our theoretical results. In the stochastic
case, we use a standard implementation of an exact Stochastic Simulation Algorithm.
In the deterministic case, we design and implement a dedicated finite volume scheme
adapted to the non-conservative form and dealing with proper boundary conditions.
We verify that both the deterministic and stochastic simulated distributions agree
with the analytical stable age distribution. Moreover, the availability of analytical
formulas helps us to study the influence of the parameters on the asymptotic propor-
tion of cells, Malthus parameter and stable age distribution.

Finally, we consider the specific application of ovarian follicle development in-
spired by the model introduced in [1] and representing the proliferation of somatic
cells and their organization in concentric layers around the germ cell. While the orig-
inal model is formulated with a nonlinear individual-based stochastic formalism, we
design a linear version based on branching processes and endowed with a straightfor-
ward deterministic counterpart. We prove the structural parameter identifiability in
the case of age independent division rates. Using a set of experimental biological data,
we estimate the model parameters to fit the changes in the cell numbers in each layer
during the early stages of follicle development. The main interest of our approach is
to benefit from the explicit formulas derived in this paper to get insight on the regime
followed by the observed cell population growth.

Beyond the ovarian follicle development, linear models for structured cell popu-
lations with unidirectional motion may have several applications in life science mod-
eling, as many processes of cellular differentiation and/or developmental biology are
associated with a spatially oriented development (e.g. neurogenesis on the cortex, in-
testinal crypt) or commitment to a cell lineage or fate (e.g. hematopoiesis, acquisition
of resistance in bacterial strains).

The paper is organized as follows. In section 2, we describe the stochastic and
deterministic model formulations and enunciate the main results. In section 3, we
give the main proofs accompanied by numerical illustrations. Section 4 is dedicated
to the application to the development of ovarian follicles. We conclude in section 5.
Technical details and classical results are provided in Supplementary materials.

2. Model description and main results.

2.1. Model description. We consider a population of cells structured by age
a € R, and distributed into layers indexed from j =1 to j = J € N*. The cells un-
dergo mitosis after a layer-dependent stochastic random time 7 = 77, ruled by an age-
and-layer-dependent instantaneous division rate b = b;(a) : P[r7 > t] = e~ J5 bj(a)da,
Each cell division time is independent from the other ones. At division, the age
is reset and the two daughter cells may pass to the next layer according to layer-

dependent probabilities. We note pé] ()) the probability that both daughter cells remain
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 3

92 on the same layer, pgj i and p((){ %, the probability that a single or both daughter cell(s)
93 move(s) from layer j to layer j + 1, with pg()) + pgj } + pé{% = 1. Note that the last

layer is absorbing: p;‘fo) = 1. The dynamics of the model is summarized in Figure 1.

- FIGURE 1. Model description. FEach cell ages until an age-dependent random division time
7. At division time, the age is reset and the two daughter cells may move only in an unidirectional
way. When j = J, the daughter cells stay on the last layer.

94
Stochastic model. Each cell in layer j of age a is represented by a Dirac mass J; 4

where (j,a) € € =[1,J] x RT. Let Mp be the set of point measures on &:

N
Mp = {Z(;jk,ak’N € N*, Vk € [[laN]]’(jk’ak) © g} ’

k=1

95 The cell population is represented for each time ¢ > 0 by a measure Z; € Mp:
Ny J +oo
96 (1) Zy = 0,00 400, Npi=< Zy1>= Z/ Zy(dj, da) .
t ’ t
k=1 7j=1 0

97 Ny is the total number of cells at time t. On the probability space (Q,F,P), we
98 define @) as a Poisson point measure of intensity ds ® #dk ® df, where ds and df are
99 Lebesgue measures on R and #dk is a counting measure on [1,J]. The dynamics
100 of Z = (Z;)t>0 is given by the following stochastic differential equation:

No
Zy = Z(sl(m AR 4y +/ IlkSstR(k,S,Z, 0)Q(ds,dk,dd)
=1 [0,¢]x&

Where R(k‘, S, Z, 0) = (2512’2),t75 — 6I§]i),A_<f_)+tfs) ﬂOSOSml(s,k,Z)
@ T O T 00 a0 ) Lk <osmate k)

F(20,0 4 g = 0100 404y ) Ling(s,k,2)<0<ms (s,k,2)

k), (125
and mq (s, k, Z) = by (Ag))pz)o ,
Ky ) () k

ma(s,k, Z) = by (AL (pog™ " +p1i ), mals,k, Z) = by (ALY).
102 Deterministic model. The cell population is represented by a population density
103 function p := (p(j)(t,a))je[[1 g € L'(Ry)7 where pU)(t,a) is the cell age density in
104 layer j at time t. The population evolves according to the following system of partial
105  differential equations:

8tp(j) (t,a) + aap(j)(ta a) = —b; (a)p(j)(t, a)

10634 p9,0) =2 Y / bj-1(a)pV 1 (¢, a)da + 2p / b;(a)p!(t, a)da
0 0
p(0,a) = po(a)
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4 F.CLEMENT, F.ROBIN AND R.YVINEC

| | o o .
where Vj € [1,7 = 1], ¢’ = 57} + 55, p7 = 591 + 962 P = Oandpy” = 1.
(0

Here, pg’ is the probability that a cell taken randomly among both daughter cells,
remains on the same layer and p(LJ) =1- pg) is the probability that the cell moves.

2.2. Hypotheses.
Hypothesis 2.1. Vj € [1,J — 1], pg),pg) €(0,1)
Hypothesis 2.2. For each layer j, b; is continuous bounded below and above:

Vjell,J], YaeRy, 0<b,<ba)<b;<oc.
DEFINITION 2.3. B; is the distribution function of 77 (B;(z) =1 — e~ Jo bi(@)da)
and dB; its density function (dB;(z) = b;(x)e~ Jo bi(®)da ),
Hypothesis/Definition 2.4. (Intrinsic growth rate) The intrinsic growth rate A; of
layer j is the solution of

o0
* Yy 1
dB; (X)) = / e N%dB;(s)ds = O

0 2pg
Remark 2.5. dB} is the Laplace transform of dB5;. It is a strictly decreasing func-
tion and ] —b;,00[C Supp(dB}) C]—bj,00[. Hence, \; > —b;. Moreover, note that
dB;(0) = fooo dBj(z)dz = 1. Thus, \j <0 when pg) < %; A; > 0 when pg) > % and
() _
J =

A; =0 when p % In particular, Ay > 0 as ng) =1.

Remark 2.6. In the classical McKendrick-VonFoerster model (one layer), the

population grows exponentially with rate Ay ([16], Chap. 1V). The same result is
shown for the Bellman-Harris process in [2] (Chap. VI).

Hypothesis/Definition 2.7 (Malthus parameter). The Malthus parameter \. is
defined as the unique mazimal element taken among the intrinsic growth rates (A;,
j€[1,J]) defined in (2.4). The layer such that the index j = c is the leading layer.

According to remark 2.5, A; is positive. We will need auxiliary hypotheses on A;
parameters in some theorems.

Hypothesis 2.8. All the intrinsic growth rate parameters are distinct.
Hypothesis 2.9. Vj € [1,J], \; > _EIEH;E bj(a).

Hypothesis 2.9 implies additional regularity for ¢ — e=*i*dB;(t) (see proof in SM1.1):

COROLLARY 2.10. Under hypotheses 2.2, 2./ and 2.9, Vj € [1,J], Vk € N,
S~ theNtdB; (t)dt < oo
Stochastic initial condition. We suppose that the initial measure Zy € Mp is
deterministic. (F;):er, is the natural filtration associated with (Z;);cr, and Q.
Deterministic initial condition. We suppose that the initial population density pg

belongs to L*(R,)”.
2.3. Notation. Let f,g € L'(R,)”, we use for the scalar product:
o on R, fT(a)g(a) = X7_; fD(a)gD(a),
o on LA(Ry), (19,g0) = [ fO 0 @)da, for € T,

0
e on LI(R,), <« f,g>= Z}]:1 fooo f(j)(a)g(J)(a)da.
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 5

For a martingale M = (M;);>0, we note (M, M), its quadratic variation. We also
introduce

w{bia), =4 je[1,J]

B(a) = diag(bi(a), ..., bs(a)), [K(a)]iyj = { 2p<1—1)b_ ( ) i=j—1, j¢€ [[2 J]]
L j—1 a), 1= s )

We define the primal problem (P) as
L p(a) = Mp(a), a >0

() §0) = [ K@itada . L") = 0p(a) ~ B,
<p,I>»>=1and p>0

and the dual problem (D) is given by

() { iDﬁ(i)Qf WS £P0la) = 0u0(a) — Bla)o+ K(a)! 9(0)

2.4. Main results.

2.4.1. Eigenproblem approach.

THEOREM 2.11 (Eigenproblem). Under hypotheses 2.1, 2.2, 2.4, 2.7 and 2.9,
there exists a first eigenelement triple (X, p, ) solution to equations (P) and (D)
where p € LY(Ry)” and ¢ € Cp(Ry)?. In particular, X is the Malthus parameter .
given in Definition 2.7, and p and ¢ are unique.

Beside the dual test function ¢, we introduce other test functions to prove large-time
convergence. Let ¢\7), j € [1,.J] be a solution of

4 009 (a) — (A +b;(0)$9 (@) = —2pFb; (@)D (0),  9)(0) € RY .

THEOREM 2.12. Under hypotheses 2.1, 2.2, 2.4, 2.7 and 2.9, there exist polyno-
mials (/Blgj))lgkgjgj of degree at most j — k such that

J
BY < et ) ([l — np®

k=1

() (Je "Dt = s

Y,

where n =< po,® >, pj = A — Aj > 0 when j € [1,J]\ {c} and p. :=b,. In
particular, there exist a polynomial B of degree at most J —1 and constant p such that
6>

< letp(t, ) —mpl.d > < B(t)e ™™ < |po —np

Using martingale techniques [3], we also prove a result of convergence for the stochastic
process Z with the dual test function ¢.
THEOREM 2.13. Under hypotheses 2.1, 2.2, 2./ and 2.7, W = e ! < ¢, Z;, >

is a square integrable martingale that converges almost surely and in L2 to a non-de-
generate random variable W..

2.4.2. Renewal equation approach. Using generating function methods de-
veloped for multi-type age dependent branching processes (see [2], Chap. VI), we
write a system of renewal equations and obtain analytical formulas for the two first

moments. We define Y;(j’a) = (Z4,1 <4) as the number of cells on layer j and of age
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6 F.CLEMENT, F.ROBIN AND R.YVINEC

less or equal than a at time ¢, and m?(¢) its mean starting from one mother cell of
age 0 on layer 1:

(6) mi(t) =B,V |Zy = 619

THEOREM 2.14. Under hypotheses 2.1, 2.2, 2.7, 2.8 and 2.9, for all a > 0,

(7) vy e [1,J], m?(t)e”‘ct — mj(a), t— oo,

Oa .] € [[la Cc— 1H7
2 5 (5)ds |
s ) J =6
ng)ﬁ(c) (0) Jy sdBc(s)e=*esds
99 (s)ds o 2pWdBr (M) , L
©50(0) [* o L ® gy 0 € et bl
2pg’ pI(0) [ sdBe(s)e=*esds = 1 — 2pg” dBy(Ac)

2.4.3. Calibration. We now consider a particular choice of the division rate:
Hypothesis 2.15 (Age-independent division rate). V(j,a) € &, bj(a) =b;.

We also consider a specific initial condition with N € N* cells:
Hypothesis 2.16 (First layer initial condition). Zy = Ndjg.

Then, integrating the deterministic PDE system (3) with respect to age or differenti-
ating the renewal equation system (see (39)) on the mean number M, we obtain:

(8) {%M(t)zAM(t) = L@ =0, =g el
M(0) = (N,0,...,0) eR7 ~ ” 2V Vo, i=j—1, je[2.J]

We prove the structural identifiability of the parameter set P := {N, bj,pg)7j €
[1, J]} when we observe the vector M (t; P) at each time ¢.

THEOREM 2.17. Under hypotheses 2.1, 2.15 and 2.16 and complete observation
of system (8), the parameter set P is identifiable.

We then perform the estimation of the parameter set P from experimental cell number
data retrieved on four layers and sampled at three different time points (see Table
la). To improve practical identifiability, we embed biological specifications used in [1]
as a recurrence relation between successive division rates:

by
9 b= ——1 e [l1,4], a €R.
) = e e b4l e
We estimate the parameter set Pey, = {NV, b1, a,pg),pg),pg’)} using the D2D soft-
ware [12] with an additive Gaussian noise model (see Figure 2 and Table 1b). An
analysis of the profile likelihood estimate shows that all parameters except pg) are
practically identifiable (see Figure SM1b).

3. Theoretical proof and illustrations.
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Time (ay) Time (day)

FIGURE 2. Data fitting with model (8). Each panel illustrates the changes in the cell number
in a given layer (top-left: Layer 1, top-right: Layer 2, bottom-left: Layer 3, bottom-right: Layer 4).
The black diamonds represent the experimental data, the solid lines are the best fit solutions of (8)
and the dashed lines are drawn from the estimated variance. The parameter values (Table 1b) are
estimated according to the procedure described in section SM2.2.

3.1. Eigenproblem. We start by solving explicitly the eigenproblem (P)-(D) to
prove theorem 2.11.

Proof of theorem 2.11. According to definition 2.3, any solution of (P) in L(R )’
is given by, Vj € [1, J],

(10) p9(a) = 39 (0)e (1 - B;)(a)

The boundary condition of the problem (P) gives us a system of equations for A and
p(0), j € [1,J]:

(11) PD0) x (1—2pdB; (V) = 2p¢VdB;_, () x pY71(0).
This system is equivalent to

() g5+ NP

CNH0) =0, [C):, = { Tt AN o |
pr, dBi_ (N, i=j-1, je[2,J].

Let A := {)\;,j € [1,J]}. The eigenvalues of the matrix C'(\) are 1 — ng)dl?;-‘(/\),
j € [1,J]. Thus, if A ¢ A, according to hypothesis 2.4, 0 is not an eigenvalue of
C(A\) which implies that 5(0) = 0. As p satisfies both (10) and the normalization
< p,1 > =1, we obtain a contradiction. So, necessary A € A.
We choose A = \; the maximum element of A according to hypothesis 2.7. Then,
using (11) when j = ¢, we have:

p(0) x (1= 2pLdBz(Ne)) = 205V dBz_ (M) x pD(0).

Note that 1 — ngC)dBZ()\c) =0, so p{*"1(0) = 0 and by backward recurrence using
(11) from j = ¢ — 1 to 1, it comes that p\9)(0) = 0 when j < ¢. By hypothesis 2.7,
max(A) is unique. Thus, when j > ¢, A; # Ac and 1 — ng)d[j’;f()\c) # 0. Solving (11)
from 7 = c+ 1 to J, we obtain:

» ) J 2p(k_1)d8*_ ()\C)
p(])(O) = p(C)(O) X H L (%) b *1
k=ct1 1 — 2pg dBk()‘C)

. Vie[e+1,J].
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8 F.CLEMENT, F.ROBIN AND R.YVINEC

We deduce (¢ (0) from the normalization < p,1 > = 1. Hence,  is uniquely deter-
mined by (10) together with the following boundary value:

0, ] € [[17c - 1]]7
) - (CESy g , J=c
(12)  PV0) = S e T gt
ﬁ(c)(O) J 2pf VB (A jele+1,J].

k=ctl 1-9p{aBr(Ae)

For the ODE system (D), any solution is given by, for j € [1, J],
99 (a) = [¢<ﬂ‘><0> —2(6V(0)p + o (o)) / e*chBxs)ds] el At

0
As / b;(s)e™ Jo Aetbildu g is equal to dB; (Ac) —/ b;(s)e™ Jo Aetbidugg e get
0 a

¢\ (a) = {¢<J‘>(0) <1 —2pd dB;(\e) + 2pY / T (e Ac+bj<u>dud5>
_ 46+ (g) (21,5_3‘) aB; () — 2 / T (s)e i Ac+b,,~<u>duds>} o Aty (s)ds
Searching for ¢ € Cp(R4)7, it comes that
13)  WielLJl ¢V () (1-2p8 dB;(A) ) — 60 (0)2pf dB; (M) = 0.

According to definition 2.4, when j = ¢ in (13) we get ¢(¢TD(0) = 0. Recursively,
#)(0) = 0 when j > c. Solving (13) from j =1 to ¢ — 1, we get

c—1 (k—1) *
. i 2py, dBk—1(>\c)
(14) Vi€ [l,e—1], 69 (0) = ¢ (0) x :

Again, we deduce ¢(®)(0) from the normalization 1 =< p, ¢ > = (p(9, ¢(©)). Using
corollary 2.10, we apply Fubini theorem:
(15)

89(0) = 1 1

a 2,6(0)(0)])(;) I (fa+°o e AesdB.(s)ds)da B 2p(©) (O)pgc) I se‘AcsdBc(s)ds'

Hence, the dual function ¢ is uniquely determined by

400

(16)  69(@) =2 [p6D(0) + 60 V0)] [T by(e)e A r gy,

a

together with the boundary value (14) and (15) (¢ is null on the layers upstream the
leading layer). 0

From theorem 2.11, we deduce the following bounds on ¢ (see proof in SM1.1).
COROLLARY 3.1. According to hypotheses 2.2, 2.4 and 2.7,

an Vi€ [LJ] bji < 69 (a) <
U A+ b T 2P0 (0) + pP et (0)) T

This manuscript is for review purposes only.



260

261

262
263

264

CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 9

To conclude this section, we also solve the additional dual problem on isolated layers
which is needed to obtain the large-time convergence (see proof in SM1.1).

LEMMA 3.2. According to hypotheses 2.2, 2.4 and 2.9, any solutionq@ of (4) sat-
isfies

N +oo R
(18) viellJ, ¢9(a)=2p ¢ (0) / bi(s)e s Ja bilwdu gg

a

30D (a
and, Ya € Ry U {400}, o < 2p(‘é)¢<(”)( 5 < oo

In all the sequel, we fix
(19)  §90)=¢0), Vie[le—1 () =¢"(0)+ m P e (0).

A first consequence is that é(c) = ¢(®) and moreover, from corollary 3.1 and lemma
3.2, we have

Aj+b

(20) ¢V (a) < 22 $U)(a).

=<j

3.2. Asymptotic study for the deterministic formalism. Adapting the
method of characteristic, it is classical to construct the unique solution in
C*(Ry,LY(R4)7) of (3) ([16], Chap. I). Let p the solution of (3), p and ¢ given by
theorem 2.11 and 7 =< pg, ¢ > . We define h as

(21) h(t,a) = e p(t,a) —npla), (t,a) € Ry xRy .
Following [7], we first show a conservation principle (see proof in SM1.1).

LEMMA 3.3 (Conservation principle). The function h satisfies the conservation
principle
< h(t,),¢p>=0.
Secondly, we prove that h is solution of the following PDE system (see proof in SM1.1).

LEMMA 3.4. h is solution of

(22) {8t]h(t,a)|+aa|h(t,a)|+ ¢+ B(a)) |h(t,a)| = 0,

In(t,0)| = | [ K (a)h(t. a)dal.
Together with the above lemmas 3.2, 3.3 and 3.4, we now prove the following key
estimates required for the asymptotic behavior.

LEMMA 3.5. Vj € [1,J], the component hU) of h verifies the inequality

(23)
o, <|h(]) > a1 <|h(j—1)<t7_)|’q3<j—1>> <\h0) S ¢<a>> + (1),
. ) T 20+1) _
where ag := 0, for j € [L, 7], aj = Tt Zfd)q;(j)(é?)(% +0;) and
0, Jj#Fc
Ae=Aj, JFc et b
M‘Z{ . , 7i(t) = Aj+ by () ) .
! b, j=c ;7% <|hJ |¢j> j=c.
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10 F.CLEMENT, F.ROBIN AND R.YVINEC

Proof of lemma 3.5. Remind that pg)) = 0 so that all the following computations
are consistent with j = 1. Multiplying (22) by ¢ and using (4), it comes for any j
(24) { 0t|lz(j)(t,a)|qg(j>(a)+8,,|h(f)(t,a)|d;(1)(a) )gb(J) (@)| WD ()| + [\ = A [RD (¢, a |¢(f

\hm(w)\@o)@):(,;<j><o)|2pg><bj,hm( )>+2p D (b1, B (R, ) |

As p(t,-) and p belong to L (R,)” and ¢ is a bounded function (from lemma 3.2) we
deduce that < h(t,-), ¢ >< oco. Integrating (24) with respect to age, we have

(25) &, <|h(j)(t, .)|7Q§(j)> — 39)(0) [|h<j)(t,0)| —op¥ <|h<j)(t,.)|,bj>}
+ (A = Ae) <‘h(j)(t, .)”(g(j)> )

We deal with the first term in the right hand-side of (25). When j # ¢, using first
the boundary value in (24), a triangular inequality and lemma 3.2, we get
j*1>

39 (0) (,hu)(w” 2p(1)<‘hy) K2 >) < 2p(Lj71>0;m(0)<|h<j—1)<t’.)’

< ajo1 (RO ()] 607D

Thus, for j # ¢,

0 (|h9( )89 < oy (WD), 8970 — g (|01, 60

When j = ¢, using the boundary value in (24) and a triangular inequality, we get

26) 0 (|nO)].6@) <26 (h(t,),be) | = (B )] be )]
+ 23O (R, ), e ) |

To exhibit a term <|h(5) | b C)> in the right hand-side of (26), we need a more

refined analysis. According to the conservation principle (lemma 3.3), for any constant
v (to be chosen later), we obtain
(27)

2§76 ) (h (2 ) be) | = [20576(0) (h)(1,),be) =7 < hlt,), 6> |

| (1O(t,),208) 6@ O = 16 ) | + 7 52t (W9 (¢, )], 09)

where we used a triangular inequality in the latter estimate. Moreover, according to
(20), we have

IA

Aj
(28) Vje[l,e—1], {(|p9)],o0) < hI)(t,-)], o
(96 e0) = 2 (a0 0,9)
and according to corollary 3.1,
(C) (e)
(29) 6 a) < 25070 (),

C

We want to find at least one constant « such that for alla > 0, ng:)(/g(c)(O)bc(a) —
¢ (a) > 0. From (29), we choose v = b,, and deduce from (27) and (28)

2 6(0)] (K 1,8 | < 28300 0) (A1, be) — b (W1, 00)
+ b ZC 1 >‘1ij <|h(J) | ¢(J)>

(30)
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As before, using lemma 3.2, we obtain

2 DO (R ), e ) | < e (D] 67D )

Combining the latter inequality with (30) and (26), we deduce (23) for j = c. |
We now have all the elements to prove theorem 2.12.

Proof of theorem 2.12. We proceed by recurrence from the index j =1 to J. For
j =1, we can apply Gronwall lemma in inequality (23) to get

<‘h<1>(t,.)|7¢3<1)> <eht <|h<1>(0,.)|7q§<1>> '

We suppose that for a fixed 2 < j < J and for all ranks 1 <7 < j — 1, there exist
polynomials 5,(:), k € [1,i], of degree at most ¢ — k such that

(31) <|h(i)(t,')|a<2>(i)> < Zﬂ,gi)(t)e—ﬂkt<‘h(k)(07.)|,(g(k)>.
k=1

Applying this recurrence hypothesis in inequality (23) for j, there exist polynomials
ﬁ,ij)(t) for k € [1,j — 1] (same degree than ﬂ(] D))

<|h(3) 9, ¢(])> ggﬁj)(t)e_”’“%lh(k)(o,-),é(k)> <’h(1) 9, ¢(J)>

We get from a modified version of Gronwall lemma (see lemma SM1.1):
J
(IRD(t,),69) < 3780 e (I1¥(0,)],60)) .
k=1

where B](j ) is a constant and for k € [1,5 — 1], ﬂ,gj )is a polynomial of degree at most
(j —1—k)+1=j—k (the degree only increases by 1 when pj, = p;). This achieves
the recurrence. ]

3.3. Asymptotic study of the martingale problem. The existence and
uniqueness of the SDE (2) is proved in a more general context than ours in [15].
Following the approach proposed in [15], we first derive the generator of the process
Z solution of (2). In this part, we consider F € C'(R;,R) and f € C}H(E,Ry).

THEOREM 3.6 (Infinitesimal generator of (Z;)). Under hypotheses 2.1 and 2.2,
the process Z defined in (2) and starting from Zy is a Markovian process in the Skhorod
space D([0, T, Mp([1,J] x R})). Let T > 0, Z satisfies

(32) E[sup N¢| < oo, E[sup<a,Z; > ] < oo
+<T t<T
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12 F.CLEMENT, F.ROBIN AND R.YVINEC

and its infinitesimal generator is

GP[< f[,Z> | =< F'[K Z,f>]0uf, Z >

J 0o .
+ Z/ (F[< £,26j0 —6ja+ 2> | = F[ < £, 2> ])pSbi(a) Z(dj, da)
j=179
J 0o )
+ Z/ (F[< £,650 + 81410 — 8ja+ 2> | = F[ < £,Z > |)p{)b;(a) Z(dj, da)
j=1"0

J oo .
+Z/ (F[< £:2041,0 = 0ja + 2> | = F[< £,Z > |)p{'}b;(a) Z(dj, da)
j=1"0

From this theorem, we derive the following Dynkin formula :

LEMMA 3.7 (Dynkin formula). Let T > 0. Under hypotheses 2.1 and 2.2, Vt €
[0,T7],

t
Fl« f,Zy > =F< f,Zy >] +/ GF[< f,Zs >]ds + M7
0
where M7 is a martingale. Moreover,

t
(33) L fiZy>=<f, 20> +/ < LPf, Zy> ds+ M/
0

where LP the dual operator in (D) and M7 is a L2—martingale defined by
(34)
t
wf = [ < BOI = KO0, 2> ds
+//[0 | gnngg_ L 126,00 o = 0,00 40 > Lo<g<m, (s,k,2)Q(ds, dk, dB)
)% ‘ o o e

+//[O e Lpan, o K000 o +8,00 1 o = 0,00 40 > Ly (s.k,2)<0<ma(s,k,2)Q(ds, dk, dF)
St X s— s— ’ s s—

+//[0 e Tran = < F26,00 1y o = 0,00 400 > Liny(s,k,2)<0<ms(s,k,2)@(ds, dk, dB)
;T X s ’ s— s

and
t J )
(Mfl) =[50 [ 1< 12850 = 550 Py (@) 2 (. o)
t 0 Jj=1 R+
J .
(35) + Z/R [< £, 850+ 8i41,0 — Sj.a >>]2bj(a)p§{}Zs(dj, da)
j=1"R+

J
+3 / (< £,28141,0 — 65,0 > 12b; ()P} Z, (dj, da)] ds
j=1"R4

The proofs of theorem 3.6 and lemma 3.7 are classical and provided in SM1.2 for
reader convenience. We now have all the elements to prove theorem 2.13.

Proof of theorem 2.135. We apply the Dynkin formula (33) with the dual test func-
t
tion ¢ and obtain € ¢, 7Z; >=< ¢,Zy > +/\c/ L ¢, Zs > ds+ Mtd) As ¢ is
0
bounded, < ¢, Z; > has finite expectation for all time ¢ according to (32). Thus,

t
(36) ]E[<<¢>,Zt>>]:]E[<<¢>,ZO>>]+>\C]E[/ <L ¢, Zs> ds).
0
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 13
359  Using Fubini theorem and solving equation (36), we obtain:

360 E[<¢,Zi> |=e™E[<¢, 20> | = Ele ™ <¢,Z > =E[<¢,Z0> ].

361 Hence, Wt¢ = e At < ¢, Z; > is a martingale. According to martingale convergence
362 theorems (see Theorem 7.11 in [4]), W, converges to an integrable random variable
363 WE > 0, P—p.s. when t goes to infinity. To prove that W2 is non-degenerated,
364 we will show that the convergence holds in L2. Indeed, from the L? and almost
365 sure convergence, we deduce the L' convergence. Then, applying the dominated
366 convergence theorem, we have:

367 E(WZ) := E[ lim we = Jlim E[W?] = E[W{] > 0.
368 Consequently, W2 is non-degenerated. To show the L2 convergence, we compute the
369 quadratic variation of W?. Applying Ito formula (see [10] p. 78-81) with F(t, <
370 ¢, 7y > ) = e Mt L ¢, Z; >, we deduce:

t
W —< 6,20 > + / [ / e (9,09) () — AedD (a)) Zs (dj, da)] ds

o Je

+//[ e Lpen, e € ,26,00) (=0, 400 > Lo<o<my (s,k,2)Q(ds, dk, db)
0,4 x Py o= e

371
7 +//[ng Tp<n, _ eAes & o, 51?1)70 + 51i@+1,0 - 51?1),14(3'1) > Loy (5,k,2)<0<ms (s,k,2)@(ds, dk, d6)
JF//[MX‘€ Licy e < 4, 251§ﬁ>+1,0 - 615'1)"“@'“—) > Ly sk, 2)<0<ms (s.k,2) Q(ds, dk, d6) .
372 As LP¢ = A\, we have
373 /g (0ad (@) = XedV) () Zs(dj, da) = < B()¢(-) = KT ()$(0), Zs > .

375 Comnsequently, from (34), we deduce

t
376 (37) WP =< ¢, Zo > +/ e ASdM? .
0

w
~
~J

t
where dM? is defined as My = / dM?. According to (35) and (37), we get
0

378

t
379 <W,¢’,W_¢>t:/0 e 2Asd (M?, M?) ds

t . .
380 = / e At [/ (Pg% [<€ 6,200 — 0.0 > 12+ PYL[< 6,850 + 8j11,0 — 00 >
0 £
3l +Pé{%[<< $,20511,0 — 0j,q >>]2) bj(a)Zs(dj,da)| ds.

383  Since, ¢ and b are bounded, there exists a constant K > 0 such that

t
384 (W W?) <K / e 2Aes [ / Z(dj, da)} ds.
0 &

385 Taking the expectation and using moment estimate (32), we get E[(W?  W¥?),] < cc.
386 Thanks to the Burkholder-Davis-Gundy inequality (see Theorem 48, [10]), we deduce

2
387 that E[sup,<p (Wf’) ] < o0, and thus the L? convergence of W¢. O
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14 F.CLEMENT, F.ROBIN AND R.YVINEC

3.4. Asymptotic study of the renewal equations. We now turn to the study
of renewal equations associated with the branching process Z. Following [2] (Chap.
VI), we introduce generating functions that determine the cell moments. In all this
subsection, we consider a € Ry U {+c0}. We recall that Y;(J’a) = (Z,1;1<,) and
Y, = (Yt(J’a))jeHLJH. For s = (51"."’5‘]) € R and j = (j1,...,js) € N7, we use
classical vector notation s = H;’Zl s

DEFINITION 3.8. We define F[s;t] = (F(“)[s;1]);c[1,5] where F(“%) is the gen-
erating function associated with Y,* starting with Zy = 6;:

FOD[s;4] .= E[s¥| Zy = ;0] -
We obtain a system of renewal equations for F' and
Me(t) = (BIY,"|Z0 = b o) jeq
LEMMA 3.9 (Renewal equations for F). Fori € [1,J], F(»% satisfies:
(38) Vie[l,J], FUs;t] = (sili<a + Lisa)(1 = Bi(t)) + fO (F%[s, ]) x dBi(t)
where 19 is given by 1O0(8) = ph? + phmsin + e
LEMMA 3.10 (Renewal equations for M). For (i,j) € [1, J]]Q, M, satisfies:

(39)  ME(t) = 6;;(1 — Bi(t)) Ly + 205 ME, # dBi(t) + 2py) M, ;  dBy(2) .

0.
The proofs of lemma 3.9 and 3.10 are given in SM1.2.
THEOREM 3.11. Under hypotheses 2.1, 2.2, 2.7, 2.8 and 2.9,
(40)  Vie[L,J], Vke[0,J—il, Mfi(t) ~ Mipr(a)e ¢ — oo

where X\ ;4 = max \;
1,14 jeliith] J

— B;(t))e Nitdt
(41) Miﬂ; ((l) fo
S fO tdBZ ) =it

and, for k € [1,J —1]

(42)

(%) 712%

L (* +4) Miy1ivk(a), if Niivr 7 i (4)
. ( ) 1- 2p5 dBi ()\i,i+k)
M; ivi(a) = D) oo

2 dBr (\;)

i M (t)e “Aitdt, if Aijitk = Aq(it).
QPE;) fooo tdBi(t)e)‘itdt/o +1,it+k

Proof. Let the mother cell index i € [1,J]. As no daughter cell can move up-
stream to its mother layer, the mean number of cells on layer j < i is null (for all
t >0 and for j < i, M;(t) = 0). We consider the layers downstream the mother one
(j > 1) and proceed by recurrence:

HE o Vie[1,J k], M Lo (t) ~ ]\Z’Hk(a)e)‘ivi*kt, ast— 0o.
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CELL DYNAMICS WITH UNIDIRECTIONAL MOTION 15

We first deal with H". We consider the solution of (39) for j = i

(43) Ve Ry, M) = (1-Bi(t) Lica + 20§ MY, + dBi(t) .
We recognize a renewal equation as presented in [2](p.161, eq.(1)) for M; ;, which is

similar to a single type age-dependent process. The main results on renewal equations
are recalled in SM1.3. Here, the mean number of children is m = ng) > 0 and the
life time distribution is B;. From hypothesis 2.2, we have

/ (1 — Bi(t)) Li<qe tdt < 17/ Ti<adB;(t)e Ntdt < B—/ dB;(t)e tdt < oo
0 i Jo i JO

according to hypothesis 2.4. Thus, t — i<, (1 — B;(t)) e *i* is in L'(R;). Using
hypotheses 2.4 and 2.9, we apply corollary 2.10 and lemma SM1.4 (see lemma 2 of
[2],p.161) and obtain:

— —~ H(1 — Bi(t))e tdt
Mg, (t) ~ M, ;(a)elit, as t — oo, where M, ;(a) = f?)( — (t))e :
2pg’ [, tdB;(t)e=itdt

i, s

Hence, H° is verified. We then suppose that H*~! is true for a given rank k — 1 > 0

and consider the next rank k. According to (39), M, ,, is a solution of the equation:

(44) M, () = 205 MEy + dBi(t) + 20 M,y iy + dBi(2).

?

We distinguish two cases : A; ;4 # A; and \; ;15 = A;. We first consider A; ;1 = A;
and show that f(t) = Mg, * dB;(t)e~*i* belongs to L'(R;). Let R > 0. Using
Fubini theorem, we deduce that:

R R R
/ f(t)dt = / [ / et {‘+Li+k(tu)dt] e NvdB;(u)du .
0 0 u

Applying a change of variable and using that M, ;,,(¢) > 0 for all ¢ > 0, we have:

R R
/ e Mt ikt —u)dt < /0 e_)\ith'a+1,i+k(t)dt'
u

According to H¥, we know that My . (t) ~ M1 ik (a)eti+ri+rt as t — oco. Then,

R R
—Ait = —Ait1,itkt —(Ni=Xig1,in)t
/ e f+1,i+k(t)dt = / e Nitlith ia+1,i+k(t)e ( 14k gt
0 0
R
< K/ e~ i ditLir )t gy < o
0

when R — 00, as A\j = Ajiyk > Ait1,i+k. Moreover, fOR e tdB; (u)du < B} (\;) <

oo according to hypothesis 2.7. Finally, we obtain an estimate for fOR f(t)dt that
does not depend on R. So, f is integrable. We can apply lemma SM1.4 and deduce
Mg (8) ~ My iy g (a)ei++t, as t — oo, with M; 1 x(a) given in (42)(ii).

We now consider the case A; ;11 # A; and introduce the following notations :

_dBi(t)
dB; (Nii+k)

—

M, (t) = Mfi+k(t)€_A'i’”kta d/li(t) e Nkt
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16 F.CLEMENT, F.ROBIN AND R.YVINEC

In this case, A;;yr > A;, so that ng)dB;"()\i7¢+k) < 2pg)dB;"()\¢) = 1. We want to
apply lemma SM1.5 (see lemma 4 of [2], P 163). We rescale (44) by e~ ?i+kt and
obtain the following renewal equation for Ml ittt

M3, (1) = 209 dBE (i) M % dBi(t) + 200 My o % dBy(t)e it |

We compute the limit of f(t) = Mg, ; , * dB;(t)e ikt

(o]
FO = [ Lo @Myt = e 000Nk ).
0

According to HM1, M, () ~ e MLk ML (@), As Ajipr # Ai, we have
Ntk = Nit1itk- Hence Mg, in(t)e —A
that fooo Ke iitk%dB;(u)du < oo. We apply the Lebesgue dominated convergence
theorem and obtain tlggo f(t) = Mit1 ,iv.(a)dBS (Niivr). Applying lemma SM1.5, we
obtain that:

si+kt is dominated by a constant K such

OFy7 *
2\ M, dBj (Aii M,
PL Mit1,ivk(a)dB] (Xijisk) = M; ivx(a),

lim Mz z+k:< )

t—00 2p5)d6*(/\i,i+k)
and the recurrence is proved. 0
We have now all the elements to prove theorem 2.14.

Proof of theorem 2.14. According to theorem 3.11, we have:
(45) Vje[1,J], mi(t) ~ M j(a)eM !, ast— oo

When j < ¢, we deduce directly from (45) that m;(a) = 0. We then consider the
leading layer j = c. For k € [1,¢ — 1], Akc # Ak 80, My .(a) is related to M1 .(a)
by (42)(i). Thus, we obtain:

c—1

(46) fie(a) = mrzll 1= 2™ (dBy,) (\e)

M, .(a) is given by (41) and we deduce m.(a). We turn to the layers j > c. For
ke [1,c—1], we have A\ = A ; # A\x. We obtain from (42)(i)

c—1 (m) 740%
. 2p;dBE (Ae)  ~

(a7) (o) = L ABae) 37, ().

=1 1= 208" (dB) (A
Then, as A\c = A j, we use (42)(ii) and obtain:

i 29 dB: (\) T
(48) M. ;(a) = O MCH’j(t)e ctdt.
2pg” Jo teAtdBc(t)dt Jo

Then, we apply the Laplace transform to (39) for & = A.. Theorem 3.11 and the fact
that A = A\ ; guarantee that we can apply the Laplace transform to (39) (see details
in SM1.3). We obtain:
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(49)
- oo .
/oo Ma+1 _(t)e—/\ctdt _ jl_[ 2p(L)dBk()‘C) « ‘_[0 p(])(s)ds '
0 ! pmer1 L= 2087dBr (N (1 —2pYdB3(\.)) x pU)(0)

Combining (47), (48) and (49) and the value of 5()(0) given in (12), we obtain 7 (a).0

We also study the asymptotic behavior of the second moment in SM1.3 (see
theorem SM1.8).

Remark 3.12. These results can be extended in a case when the mother cell is
not necessary of age 0 (for the one layer case, see [2], p.153).

Remark 3.13. Using the same procedure as in theorem 3.11, we can obtain a bet-
ter estimate for the convergence of the deterministic solution p than that in theorem
2.12. Indeed, we can consider the study of h(t,z) = e~ 1ilp(t,z) — np1 ;(x) where
p1,j is the eigenvector of the sub-system composed of the j-th first layer, and find the
proper function ¢ ;.

3.5. Numerical illustration. We perform a numerical illustration with age
independent division rates (which satisfy hypothesis 2.2). Figure 3a illustrates the
exponential growth of the number of cells, either for the original solution of the model
(2) (left panel) or the renormalized solution (right panel), checking the results given
in theorems 2.14 and SM1.8. Figure 3b instantiates the effect of the parameters by
and pg) on the leading layer (left panel) and the asymptotic proportion of cells (right
panel). Note that the layer with the highest number of cells is not necessary the leading
one. As can be seen in Figure 4, the renormalized solutions of the SDE (2) and PDE
(3) match the stable age distribution p (see theorems 2.11 and 2.14). Asymptotically,
the age distribution decreases with age, which corresponds to a proliferating pool of
young cells, and is consistent with the fact that 1) is proportional to e~ *<*P[r()) > q.
The convergence speeds differ between layers (here, the leading layer is the first one
and the stable state of each layer is reached sequentially), corroborating the inequality
given in theorem 2.12.

4. Parameter calibration. Throughout this part, we will work under hypothe-
ses 2.1, 2.15 and 2.16. As a consequence, the intrinsic growth rate per layer can be
computed easily:

(50) Ay = (2p9) — 1)b; €] — by, b;[, when j < J .
4.1. Structural identifiability. We prove here the structural identifiability of

our system following [8]. We start by a technical lemma.

LEMMA 4.1. Let M be the solution of (8). For any linear application U : R —
R’ we have [Vt, M(t) € ker(U)] = [U = 0].

Proof. Ad absurdum, if U # 0 and M(t) € ker(U), for all ¢, then there exists a
non-zero vector u := (uy, ...,uz) such that for all ¢, uZ M(¢) = 0. This last relation,
evaluated at ¢ = 0 and thanks to the initial condition of (8), implies u; = 0. Then,
derivating M, solution of (8), we obtain:

J J
MO =05 Y w1~ A MYV + MO (0] =0.

=2 =2
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o e

Number of cells

Number of cells

0 s 160 260 do
Time (day) Tine (@ay) Time (day) Time (day)

(a) Exponential growth and asymptotic behavior

10 1.0
0.8
0s
06
oe 0.4
04 02
0.0
02 Layer 4 Layers  Layer2 Layer 1
0.0 0.2 0.4 06 0.8 10
00 W

0 20 4 60 80 100 120 ps

(b) Leading layer index and asymptotic proportion of
cells

FIGURE 3. Exponential growth and asymptotic moments. Figure 3a: Outputs of 1000 sim-
ulations of the SDE (2) according to the algorithm SM1 with p(j) b; given in Figure 1b, p(]) =0
and Zo = 15501,0. Left panel: the solid color lines correspond to the outputs of the stochastic
simulations while the black stars correspond to the numerical solutions of the ODE (8) with the
wnitial number of cells on the first layer N = 155 (orange: Layer 1, red: Layer 2, green: Layer 3,
blue: Layer 4). Right panel: the color solid lines correspond to the renormalization of the outputs
of the stochastic simulations by e~*ct. The black stars are the numerical solutions of the ODE (8).
The color and black dashed lines correspond to the empirical means of the simulations and the ana-
lytical asymptotic means (155mj(00), theorem 2.14), respectively. The color and black dotted lines
represent the empirical and analytical asymptotic 95% confidence intervals (1.964/v;(00), corollary

SM1.10), respectively. Figure 3b: Leading layer index as a function of by and ps) (left panel) and
proportion of cells per layer in asymptotic regime with respect to ps) (right panel). In both panels,
b satisfies (9) and p(]) =-15 *pg) *(j—1)2 =110 *p(l) *(j—1) +pgl).

Again, at t = 0, we obtain ug(b; — A1) = 0. Because \; # b1, ug = 0. Iteratively,

j—1
VjEHZJ]], U j H(bk,l—)\k,l):o :>uj:0.
k=1
We obtain a contradiction. 0

We can now prove theorem 2.17.

Proof of theorem 2.17. According to [8], the system (8) is P-identifiable if, for
two sets of parameters P and P, M(t; P) = M(t; P) implies that P = P.
~ d d
YVt >0,M(t;P)= Mt P) = ﬁM(t P)=
= ApM(t;P) = A M (t; P) = A5 M(t; )
(Ap — Ag)M <t P) -

4
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FIGURE 4. Stable age distribution per layer. Age distribution at different times of one
simulation of the SDE (2) and of the PDE (3) using the algorithms described in respectively SM1
and SM2.0.2. We use the same parameters as in Figure 3. From top to bottom: t = 5, 25, 50 and
100 days. The color bars represent the normalized stochastic distributions. The black dashed lines
correspond to the normalized PDE distributions, the color solid lines to the stable age distributions
p), je [1,4]. The details of the normalization of each lines are provided in SM2.1.

So, M(t;P) € ker(Ap — Ap) and, from lemma 4.1, we deduce that Ap = As. Thus,

(2p§’ = )by = (25§ — by, V5 € [1, ],

200, = 25, vje[1,J—1].
Using that p(Lj) =1- pg) and hypothesis 2.1, we deduce P = P. 0

4.2. Biological application. We now consider the application to the develop-
ment of ovarian follicles.

4.2.1. Biological background. The ovarian follicles are the basic anatomical
and functional units of the ovaries. Structurally, an ovarian follicle is composed of a
germ cell, named oocyte, surrounded by somatic cells (see Figure 5). In the first stages
of their development, ovarian follicles grow in a compact way, due to the proliferation
of somatic cells and their organization into successive concentric layers starting from
one layer at growth initiation up to four layers.

FIGURE 5. Histological sections of ovarian follicles in the compact growth phase. Left
panel: one-layer follicle, center panel: three-layer follicle, right panel: four-layer follicle. Courtesy
of Danielle Monniauz.

4.2.2. Dataset description. We dispose of a dataset providing us with mor-
phological information at different development stages (oocyte and follicle diameter,
total number of cells), and acquired from ez vivo measurements in sheep fetus [5]. In
addition, from [14, 13], we can infer the transit times between these stages: it takes
15 days to go from one to three layers and 10 days from three to four layers. Hence
(see Table 1a), the dataset consists of the total numbers of somatic cells at three time
points.
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t=20 t =20 t =35 . . () . )
Data points (62) || 34 10 18 %ayer J 556806 371146 A
Total cell num- || 113.89 =+ | 885.75 =+ | 2241.75 + 5 0.4837 0'0435
ber 57.76 380.89 786.26 3 0'902r 0'03r4
Oocyte diameter || 40.31 =+ | 75.94 =+ | 88.08 =+ el I
(um) 8.15 10.89 7.43 A
Follicle diameter || 71.68 + | 141.59 + | 19536 + | |4 1 0.0324
(um) 13.36 17.11 23.95

(a) Summary of the dataset (b) Estimated values of the parame-
ters.
TABLE 1

Experimental dataset and estimated values of the parameters. Table 1b. The estimated
value of a and the initial number of cells are respectively o = 1.633 and N =~ 155. For j > 2,
the b; parameter values (in blue) were computed using formula (9). The A; values were computed
using formula (50). The 95%-confidence intervals are by € [0.0760;0.1528], o € [0.0231;5.685],

N € [126.4;185.4], p§”) € [0.6394;0.7643], p € [0;0.7914] and p € [0.6675;0.9739].

We next take advantage of the spheroidal geometry and compact structure of
ovarian follicles to obtain the number of somatic cells in each layer. Spherical cells
are distributed around a spherical oocyte by filling identical width layers one after
another, starting from the closest layer to the oocyte. Knowing the oocyte and somatic
cell diameter (respectively dp and ds) and, the total number of cells N¢*P, we compute
the number of cells on the jth layer according to the ratio between its volume V7 and
the volume of a somatic cell V*:

INITIALIZATION: j < 1,V?® «
While N >0 :
Vi %[(do+2*j*d8)3 —(do+2x(j —1)*dy)?]
N; +min(%,N),N «+ N — N;,j+ j+1
J+—j—-1
The corresponding dataset is shown on the four panels of Figure 2.

7rd‘:f
6

N « Newp

4.2.3. Parameter estimation. Before performing parameter estimation, we
take into account additional biological specifications on the division rates. The oocyte
produces growth factors whose diffusion leads to a decreasing gradient of proliferat-
ing chemical signals along the concentric layers, which results to the recurrence law
(9) similar as that initially proposed in [1]. Considering a regression model with an
additive gaussian noise, we estimate the model parameters to fit the changes in cell
numbers in each layer (see SM2.2 for details). The estimated parameters are provided
in Table 1b and the fitting curves are shown in Figure 2. We compute the profil likeli-
hood estimates [11] and observe that all parameters are practically identifiable except

pgz) (Figure SM1la ). In contrast, when we perform the same estimation procedure
on the total cell numbers, most of the parameters are not practicality identifiable
(dataset in Table 1a, see detailed explanations in SM2.2).

5. Conclusion. In this work, we have analyzed a multi-type age-dependent
model for cell populations subject to unidirectional motion, in both a stochastic and
deterministic framework. Despite the non-applicability of either the Perron-Frobenius
or Krein-Rutman theorem, we have taken advantage of the asymmetric transitions be-
tween different types to characterize long time behavior as an exponential Malthus
growth, and obtain explicit analytical formulas for the asymptotic cell number mo-
ments and stable age distribution. We have illustrated our results numerically, and
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studied the influence of the parameters on the asymptotic proportion of cells, Malthus
parameter and stable age distribution. We have applied our results to a morphody-
namic process occurring during the development of ovarian follicles. The fitting of the
model outputs to biological experimental data has enabled us to represent the com-
pact phase of follicle growth. Thanks to the flexibility allowed by the expression of
morphodynamic laws in the model, we intend to consider other non-compact growth
stages.
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