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Abstract. This paper considers the behavior of discrete and continuous mathematical models
for gene expression in the presence of transcriptional/translational bursting. We treat this problem
in generality with respect to the distribution of the burst size as well as the frequency of bursting,
and our results are applicable to both inducible and repressible expression patterns in prokaryotes
and eukaryotes. We have given numerous examples of the applicability of our results, especially in
the experimentally observed situation that burst size is geometrically or exponentially distributed.
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1. Introduction. Recent spectacular advances in the ability of experimentalists
to monitor the temporal behavior of single molecules [4, 8, 18, 22, 23, 28, 33] inside cells
has led to a quantum leap in our knowledge of their behavior as well as a plethora
of data that challenge mathematicians. These techniques are so refined that they
allow the single molecule quantification of the transcription of mRNA as well as the
translation of the mRNA into protein. This visualization has shown that in many
cases these transcription and translation processes occur in quantal bursts in which
a few molecules are produced during a discrete period of time. An analysis of the
data obtained from such experiments has given us many details of the nature of
the bursting kinetics that are being used to guide mathematical modeling of these
fascinating processes.

This paper utilizes the two main approaches that have been employed to model
these bursting processes, i.e. a discrete formulation for the numbers of molecules [27]
or a continuous one [6, 15] and illustrates the common features of both as well as the
differences. Modeling (as opposed to simulation [7, 16] which we do not consider) of
the details of gene expression as a discrete Markov process has an extensive literature
(c.f [9, 10, 20, 22, 25, 24, 27, 30]) that has recently seen a flurry of activity. The
other approach that has received extensive attention is modeling of the process as a
continuous one and [6, 13, 15, 17, 26] are representative of these efforts. The reader
can consult [11] for an excellent expository account of the connection between these
two approaches.

In the discrete Markov models, steady-state analytical solutions of the master
equation can often be obtained using the moment generating function. For the contin-
uous model formulations, one needs to solve the Fokker-Planck-like equations, some-
times using Laplace transforms. When solutions are not available, moment equations
can be derived and usually solved [19, 29]. Though continuous models have many
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analytic advantages over discrete ones, it is also the case that information of poten-
tial importance may be lost in the continuous model formulation compared with the
discrete formulation.

This paper presents a general one dimensional model for bursting gene expression
in both a discrete Markov process formulation as well as a continuous situation. Sec-
tion 2 presents some general background material while Section 3 presents the discrete
version of the bursting model. Section 3.1 develops the general formulation of the dis-
crete model while Section 3.2 deals with the special case in which the burst amplitudes
are geometrically distributed. Section 4 develops the corresponding continuous model
of the bursting expression, with a general development in Section 4.1 and Section 4.2
devoted to the situation where the burst amplitudes are exponentially distributed–a
situation often found experimentally. Section 4.3 concludes with an examination of
a generalization of the exponential distribution of burst amplitudes. The paper ends
with some general observations in Section 5. Throughout the paper, our results are
illustrated with numerous examples.

2. Notation and background. Let the triple (E, E ,m) be a σ-finite measure
space and let L1 = L1(E, E ,m) with norm denoted by ‖ · ‖1. A linear operator P on
L1 is called substochastic (stochastic) if Pu ≥ 0 and ‖Pu‖1 ≤ ‖u‖1 (‖Pu‖1 = ‖u‖1)
for all u ≥ 0, u ∈ L1. We denote by D the set of all probability densities on E, i.e.

D = {u ∈ L1 : u ≥ 0, ‖u‖1 = 1},

so that a stochastic operator transforms a density into a density. In the particular case
of a countable set E with E being the family of all subsets of E and m the counting
measure, the space L1 will be denoted by `1.

Let P : E×E → [0, 1] be a stochastic transition kernel, i.e. P(x, ·) is a probability
measure for each x ∈ E and the function x 7→ P(x,B) is measurable for each B ∈ E ,
and let P be a stochastic operator on L1. If∫

B

Pu(x)m(dx) =

∫
E

P(y,B)u(y)m(dy) for all B ∈ E , u ∈ D,

then P is called the transition operator corresponding to P. A stochastic operator
P on L1 is called partially integral or partially kernel if there exists a measurable
function p : E × E → [0,∞) such that∫

E

∫
E

p(x, y)m(dy)m(dx) > 0 and Pu(x) ≥
∫
E

p(x, y)u(y)m(dy)

for every density u. If, additionally,∫
E

p(x, y)m(dx) = 1, y ∈ E,

then P corresponds to the stochastic kernel

P(y,B) =

∫
B

p(x, y)m(dx), y ∈ E,B ∈ E ,

and we simply say that P has kernel p. Note that each stochastic operator on `1 has
a kernel.

We denote by D(A) the domain of a linear operator A. We say that A ⊆ B,
or that B is an extension of A, if D(A) ⊆ D(B) and Bu = Au for u ∈ D(A). The
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operator A is said to be closable if it has a closed extension. If A is closable, then the
closure A of A is the minimal closed extension of A; more specifically, it is the closed
operator whose graph is the closure in L1 × L1 of the graph of A. For an exposition
of semigroup theory we refer to [5].

A semigroup {P (t)}t≥0 of linear operators on L1 is called substochastic (stochas-
tic) if it is strongly continuous and for each t > 0 the operator P (t) is substochastic
(stochastic). A density u∗ is called invariant or stationary for {P (t)}t≥0 if u∗ is a
fixed point of each operator P (t), P (t)u∗ = u∗ for every t ≥ 0.

Theorem 1 ([21, Theorem 2]). Let {P (t)}t≥0 be a stochastic semigroup such that
for some t0 > 0 the operator P (t0) is partially integral. If the semigroup {P (t)}t≥0

has only one invariant density u∗ and u∗ > 0 a.e. then

lim
t→∞

‖P (t)u− u∗‖1 = 0 for all u ∈ D.

3. A discrete bursting model formulated as a Markov process. This
section considers bursting gene expression as a Markov process.

3.1. The general case. In this section we model the number of gene products as
a pure-jump Markov process X = {X(t)}t≥0 in the state space E = {0, 1, 2, . . .}. Thus
a master equation governs the dynamics evolution of probabilities. A general one-
dimensional bursting gene expression model [11] may be constructed as follows. Let
n be the number of gene products and Pn(t) = Pr(X(t) = n) denote the probability
of finding n gene products inside the cell at a given time t. We shall include a loss
(n→ n−1) and gain (n→ n+k) of functional processes in terms of the general rates
γn and λn, respectively. The step size assumes the values k = 1, 2, . . . and is a random
variable (independent of the actual number of gene products) with probability density
function h, so that

∑+∞
k=1 hk = 1. Therefore, our general master equation describing

the time evolution of the probabilities Pn to have n gene products in a cell is an
infinite set of differential equations

(3.1)
dPn
dt

= γn+1Pn+1 − γnPn +

n∑
k=1

hkλn−kPn−k − λnPn, n = 0, 1, . . . ,

where we use the convention that
∑0
k=1 = 0. We supplement (3.1) with the initial

condition Pn(0) = vn, n = 0, 1, . . ., where v = (vn)n≥0 ∈ `1 is a probability density
function of the initial amount X(0) of the gene product. In the following paragraphs,
we consider the existence and uniqueness of solutions of (3.1) together with conver-
gence to a stationary distribution and then summarize our results in Theorem 2.

Assume that

(3.2) λ0 > 0, γ0 = 0, γn > 0, λn, hn ≥ 0, n = 1, 2, . . . ,

+∞∑
n=1

hn = 1.

The process X is the minimal pure jump Markov process with the jump rate function
ϕ(n) = λn + γn, n ≥ 0, and the jump transition kernel K given by

(3.3) K(n, {n+ j}) =

 qn, if j = −1, n ≥ 1,
(1− qn)hj , if j ≥ 1, n ≥ 0,
0, otherwise,

qn =
γn

λn + γn
.
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First, we recall the construction of X. Let {ξk}k≥0, be a discrete time Markov chain
in the state space E = Z+ = {0, 1, . . .} with transition kernel K and let {εk}k≥1 be
a sequence of independent random variables, exponentially distributed with mean 1.
Set T0 = 0 and define recursively the times of jumps of X as

Tk = Tk−1 +
εk

ϕ(ξk−1)
, k = 1, 2, . . . .

Starting from X(0) = ξ0 we have

X(t) = ξk, Tk ≤ t < Tk+1, k = 0, 1, 2, . . . ,

so that the process is uniquely determined for all t < T∞, where

T∞ = lim
k→∞

Tk

is called the explosion time. If the explosion time is finite, we can add the point −1
to the state space and we can set X(t) = −1 for t ≥ T∞. The process X is called
nonexplosive if Pi(T∞ = ∞) = 1 for all i ∈ E, where Pi is the law of the process
starting from X(0) = i. In particular, if the chain {ξk}k≥0 is recurrent, then X is
nonexplosive.

We now rewrite equation (3.1) as an abstract Cauchy problem in the space `1. We
make use of the results from [32]. Let K be the transition operator on `1 corresponding
to K defined as in (3.3). For v = (vn)n≥0 ∈ `1 we have (Kv)0 = q1v1 and

(Kv)n = qn+1vn+1 +

n∑
k=1

hk(1− qn−k)vn−k, n = 1, 2, . . . .

Define the operator

Gu = −ϕu+K(ϕu) for u ∈ `1ϕ = {u ∈ `1 :

∞∑
n=0

ϕn|un| <∞}.

There is a substochastic semigroup {P (t)}t≥0 on `1 such that for each initial proba-
bility density function v ∈ `1ϕ the equation

(3.4)
du

dt
= G(u), t > 0, u(0) = v,

has a nonnegative solution u(t) which is given by u(t) = P (t)v for t ≥ 0 and

(P (t)v)n =

∞∑
j=0

Pj(X(t) = n, t < T∞)vj , n = 0, 1, . . . .

The process X is nonexplosive if and only if the semigroup {P (t)}t≥0 is stochastic.
Equivalently, the generator of the semigroup {P (t)}t≥0 is the closure of (G, `1ϕ). In
that case the solution u(t) of (3.4) is unique and it is a probability density function
for each t, if v is has these properties.

The equation for the steady state p∗ = (p∗n)n≥0 of (3.1) is of the form

(3.5) γn+1p
∗
n+1 − γnp∗n +

n∑
k=1

hkλn−kp
∗
n−k − λnp∗n = 0, n = 0, 1, . . . .
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Observe that γ1p
∗
1 = λ0p

∗
0 and that we can rewrite (3.5) as

γn+1p
∗
n+1 − γnp∗n = λnp

∗
n −

n−1∑
k=0

hn−kλkp
∗
k, n = 1, 2 . . . .

Hence

γn+1p
∗
n+1 =

n∑
j=0

λjp
∗
j −

n∑
j=1

j−1∑
k=0

hj−kλkp
∗
k

and changing the order of summation, we obtain

(3.6) p∗n+1 =
1

γn+1

n∑
k=0

hn−kλkp
∗
k, n = 0, 1, . . . ,

where

hl =

∞∑
j=l+1

hj , l ≥ 0.

Thus given p∗0, equation (3.6) uniquely determines p∗. Consequently, there is one, and
up to a multiplicative constant only one, solution of equation (3.5). If p∗0 > 0 and
either hl > 0 for all l ≥ 0 or λl > 0 for all l ≥ 1, then p∗n > 0 for all n ≥ 1. Now, if

(3.7)

∞∑
n=0

p∗n = 1 and

∞∑
n=0

(λn + γn)p∗n <∞,

then p∗ ∈ `1ϕ, G(p∗) = 0, and K(ϕp∗) = ϕp∗, which implies that the semigroup
{P (t)}t≥0 is stochastic. We have thus proved the following result, which is an analog
of Theorem 1 for the discrete bursting model.

Theorem 2. Assume condition (3.2) and suppose that a strictly positive p∗ =
(p∗n)n≥0 given by (3.6) satisfies (3.7). Then for each initial probability density function
v = (vn)n≥0 ∈ `1ϕ equation (3.1) has a unique solution which is a probability density
function for each t > 0 and satisfies

lim
t→∞

∞∑
n=0

|(P (t)v)n − p∗n| = 0.

Remark 1. From (3.6) it follows that

∞∑
n=0

γn+1p
∗
n+1 =

∞∑
n=0

n∑
k=0

 ∞∑
j=n−k+1

hj

λkp
∗
k =

∞∑
k=0

∞∑
n=k

 ∞∑
j=n−k+1

hj

λkp
∗
k.

The mean value E(h) of the distribution h can be represented as

E(h) =

∞∑
j=0

jhj =

∞∑
n=0

∞∑
j=n+1

hj .
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We thus obtain

E(h) =

∞∑
n=k

∞∑
j=n−k+1

hj

for each k ≥ 0. Combining these leads to

∞∑
n=0

γn+1p
∗
n+1 = E(h)

∞∑
k=0

λkp
∗
k.

3.2. Bursting with a geometric distribution. Next, we give sufficient con-
ditions for (3.7) in the case when h is geometric

(3.8) hk = (1− b)bk−1, k = 1, 2, . . . ,

with b ∈ (0, 1). Since

∞∑
j=n−k+1

hj = bn−k,

we obtain the following equation for p∗ = (p∗n)n≥0

(3.9)
p∗n+1

p∗n
=
λn + bγn
γn+1

, n = 0, 1 . . . .

Explicit stationary solutions in this case were recently obtained in [1]. However, for h
geometric, we can go further and prove convergence to this stationary state with the
following result which follows from Theorem 2 and Remark 1.

Corollary 3. Assume that condition (3.2) holds. Suppose that h is geometric
as in (3.8). Then p∗ = (p∗n)n≥0 is given by

(3.10) p∗n = p∗0

n∏
k=1

λk−1 + bγk−1

γk
=
p∗0λ0

γn

n−1∏
k=1

λk + bγk
γk

, n = 1, 2, . . . .

In particular, if

(3.11) lim sup
n→∞

λn
γn

< 1− b and lim inf
n→∞

γn > 0,

then the conclusions of Theorem 2 hold.
Example 1. Consider λn to be a Hill function of the form

(3.12) λn = λ
1 + ΘnN

Λ + ∆nN

where Λ,∆, N > 0 and Θ ≥ 0. If h is geometric and

lim inf
n→∞

γn >
λΘ

∆(1− b)
,

then condition (3.11) holds.
Remark 2 (Bifurcation in the discrete case). Equation 3.9 can be used to examine

the bifurcations in the stationary density, defined as changes in the number of maxima,
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as a function of the model parameters. The number of maxima are linked to the
number of sign changes of

(3.13) n 7→ λn + bγn − γn+1.

In particular, p∗ has a maximum at 0 if λ0 < γ1, and each successive sign change of
(3.13) gives a maximum/minimum of p∗.

We now provide examples for which the stationary distribution can be identified
explicitly. In the following examples we assume that h is geometric with parameter b
as in (3.8) and that γn = γn, n ≥ 1, with γ > 0.

Example 2 (Negative binomial). Suppose that λn = λ0 + λn with λ0 > 0, λ ≥ 0.
We have λn ≥ 0 for each n. Substituting γk and λk into (3.10) gives

p∗n =
p∗0
n!

n−1∏
k=0

(
λ0

bγ + λ
+ k

)(
λ+ bγ

γ

)n
, n = 0, 1, . . . .

Thus p∗ ∈ `1 if and only if

λ+ bγ < γ.

In that case we obtain the negative binomial distribution

p∗n =
(a)n
n!

pn(1− p)a, n = 0, 1, . . . ,

where

p =
λ+ bγ

γ
, a =

λ0

bγ + λ
,

and (a)n is the Pochhammer symbol defined by

(a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1)(a+ 2) . . . (a+ n− 1), (a)0 = 1.

This was previously obtained in [27].
Example 3 (Mixture of logarithmic distribution). Suppose that λ0 > 0 and λn = 0

for n ≥ 1. Then

p∗n = p∗0
λ0

γ

bn−1

n
, n = 1, 2, . . . ,

which can be rewritten as

p∗n = − bn

n ln(1− b)
(1− p∗0), n = 1, 2, . . . , p∗0 =

bγ

bγ − λ0 ln(1− b)
.

The distribution

p̃0 = 0, p̃n = − bn

n ln(1− b)
, n = 1, 2, . . . ,

is called a logarithmic distribution.
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If we assume that λn = 0 for n > m, then we obtain the following distribution

p∗n = p∗0
bn

n!

n−1∏
k=0

(
λk
bγ

+ k

)
, n = 0, . . . ,m,

and

p∗n =
bn

cn

1−
m∑
j=0

p∗j

 , n > m,

where c and p∗0 are such that

c =

∞∑
j=m+1

bj

j
and

m∑
j=0

p∗j + p∗m
mc

bm
= 1.

In particular, this type of distribution will be obtained if we take λ0 > 0, λ < 0, and

λn =

{
λ0 + λn, if n ≤ −λ0/λ,
0, otherwise.

Example 4 (Hypergeometric distributions). We now take

(3.14) λn = λ
1 + Θn

Λ + ∆n

where λ > 0,Λ ≥ 1,Θ ≥ ∆. We find that, for each n,

λn + bγn

γ
=
b(n+ a1)(n+ a2)

n+ b1
,

where

b1 =
Λ

∆
, a1 =

1

2
(α− β) , a2 =

1

2
(α+ β) ,

and

α =
Λ

∆
+

λΘ

bγ∆
, β2 = α2 − 4λ

bγ∆
.

Since Λ ≥ 1 and Θ ≥ ∆, we can find a nonnegative β, thus a2 ≥ a1 > 0. Consequently,
the stationary distribution is of the form

(3.15) p∗n =
1

2F1(a1, a2; b1; b)

(a1)n(a2)n
(b1)n

bn

n!
, n = 0, 1, . . . ,

where 2F1 is Gauss’ hypergeometric function

2F1(a1, a2; b1;x) =

∞∑
n=0

(a1)n(a2)n
(b1)n

xn

n!
.

Example 5 (Generalized hypergeometric distributions). The generalized hyper-
geometric function pFq is defined to be the real analytic function on R given by the
series expansion

pFq(a1, . . . , ap; b1, . . . , bq;x) =

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

xn

n!
.
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The negative binomial distribution in Example 2 for the case of λ = 0 has the probabil-
ity generating function s 7→ 1F0(a1; bs)/1F0(a1; b) with a1 = λ0/bγ. The distribution
obtained in Example 4 has the probability generating function

s 7→ 2F1(a1, a2; b1; bs)

2F1(a1, a2; b1; b)
.

Extending both of these examples we suppose that λn ≥ 0 is a rational function of n
satisfying

λn + bγn

γ
=

(n+ a1) . . . (n+ aq+1)b

(n+ b1) . . . (n+ bq)
, n = 0, 1, 2, . . . .

Then p∗ = (p∗n)n≥0 has the probability generating function

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; bs)

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; b)
.

4. Continuous bursting model.

4.1. The general case. In this section we consider a continuous state space
version of the model presented in Section 3, which is a piecewise deterministic Markov
process (PDMP) Y = {Y (t)}t≥0 with values in E = (0,∞) where Y (t) denotes the
amount of the gene product in a cell at time t, t ≥ 0. We assume that protein molecules
undergo degradation at a rate γ that is interrupted by production at random times

t1 < t2 < . . .

occurring with intensity ϕ, and that both ϕ and γ depend on the current number of
molecules. At each tk a random amount of protein molecules is produced, so that the
process changes from Y (tk−) to Y (tk) = Y (tk−) + ek, k = 1, 2, . . ., where {ek}k≥1 is
a sequence of random variables such that

Pr(ek ∈ B|Y (tk−) = y) =

∫
B

h(x, y)dx,

where h is a nonnegative measurable function satisfying

(4.1)

∫ ∞
0

h(x, y)dx = 1, y > 0.

The time-dependent probability density function u(t, x) is described by the continuous
analog of the master equation [14, 15]

(4.2)
∂u(t, x)

∂t
=
∂(γ(x)u(t, x))

∂x
− ϕ(x)u(t, x) +

∫ x

0

ϕ(y)u(t, y)h(x− y, y)dy

with the initial probability density u(0, x) = v(x), x > 0.
We assume that γ is a continuous function such that

(4.3) γ(x) > 0 for x > 0,

∫ δ

0

dx

γ(x)
= +∞,
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for some δ > 0 and that ϕ is a nonnegative measurable function with ϕ/γ being
locally integrable on (0,∞) and satisfying

(4.4)

∫ δ

0

ϕ(x)

γ(x)
dx = +∞.

From (4.3) it follows that the differential equation

(4.5) x′(t) = −γ(x(t)), x(0) = x > 0,

has a unique solution which we denote by πtx, t ≥ 0, x > 0. For each x > 0 we have
πtx > 0 for all t > 0 and πtx→ 0 as t→∞. This and condition (4.4) give∫ t

0

ϕ(πsx)ds =

∫ x

πtx

ϕ(y)

γ(y)
dy →∞, as t→∞,

which implies that the function

t 7→ 1− e−
∫ t
0
ϕ(πsx)ds

is a distribution function of a positive and finite random variable for every x > 0.
We now recall the construction of the minimal piecewise deterministic Markov

process Y (see e.g. [2, 3] or [32] for details). Let {εk}k≥1 be a sequence of independent
random variables exponentially distributed with mean 1, which is also independent of
{ek}k≥1. Set t0 = 0. For each k = 1, 2, . . . and given Y (tk−1) the process evolves as

(4.6) Y (t) =

{
πt−tk−1

Y (tk−1), tk−1 ≤ t < tk,
Y (tk−) + ek, t = tk,

where tk = tk−1 + ∆tk and ∆tk is a random variable such that

Pr(∆tk ≤ t|Y (tk−1) = x) = 1− e−
∫ t
0
ϕ(πsx)ds, t, x > 0.

The random variable ∆tk can be defined with the help of the exponentially distributed
random variable εk through the equality in distribution

εk =

∫ ∆tk

0

ϕ(πsY (tk−1))ds,

which can be rewritten as

εk = Q(π∆tkY (tk−1))−Q(Y (tk−1)),

where the non-increasing function Q is given by

(4.7) Q(x) =

∫ x̄

x

ϕ(y)

γ(y)
dy,

and x̄ = +∞, when the integral is finite or any x̄ > 0 otherwise. Since Y (tk−) =
π∆tkY (tk−1), we obtain the following stochastic recurrence equation for {Y (tk)}k≥0

(4.8) Y (tk) = Q−1(Q(Y (tk−1)) + εk) + ek, k = 1, 2, . . . ,



DYNAMICS OF STOCHASTIC GENE EXPRESSION MODELS 11

whereQ−1 is the generalized inverse ofQ, Q−1(r) = sup{x : Q(x) ≥ r}. Consequently,
Y (t) is defined by (4.6) for all t < t∞, where t∞ = limk→∞ tk is the explosion time.
As in the discrete state space we can extend the state space E by adding the point
−1 and define Y (t) = −1 for t ≥ t∞. Let Px be the law of the process Y starting at
Y (0) = x and denote by Ex the expectation with respect to Px.

Remark 3. Note that if condition (4.4) holds (equivalently Q(0) = ∞) then the
amount of the gene product {Y (tk)}k≥0 at the jump times is a discrete time Markov
process with transition probability function given by

K(y,B) =

∫
B

k(x, y)dx, B ∈ B((0,∞)),

where

(4.9) k(x, y) = eQ(y)

∫ y

0

1(0,x)(z)h(x− z, z)ϕ(z)

γ(z)
e−Q(z)dz, x, y > 0.

If Q(0) <∞ then the random variable ∆t1 is infinite with positive probability, since
we have for any x > 0

Pr(∆t1 =∞|Y (0) = x) = lim
t→∞

Pr(∆t1 > t|Y (0) = x) = eQ(x)−Q(0) > 0,

which then forces the process Y (t, ω) starting form Y (0, ω) = x to be πt(x) for all t,
if ω is such that ∆t1(ω) =∞.

In what follows we assume that (4.3) and (4.4) hold. We rewrite equation (4.2)
as an abstract Cauchy problem in L1

(4.10)
du

dt
= Cu, u(0) = v,

where the operator

(4.11) Cu(x) =
d(γ(x)u(x))

dx
− ϕ(x)u(x) +

∫ x

0

ϕ(y)u(t, y)h(x− y, y)dy

is defined on the domain

(4.12) D(C) = {u ∈ L1 : γu ∈ AC, (γu)′ ∈ L1, lim
x↑∞

(γ(x)u(x)) = 0, ϕu ∈ L1},

and γu ∈ AC means that the function x 7→ γ(x)u(x) is absolutely continuous.
From [14, 32] it follows that there is a substochastic semigroup {P (t)}t≥0 on L1

such that for each initial density v ∈ D(C) equation (4.10) has a nonnegative solution
u(t) which is given by u(t) = P (t)v for t ≥ 0 and

(4.13)

∫ ∞
0

Px(Y (t) ∈ B, t < t∞)v(x)dx =

∫
B

P (t)v(x)dx

for all Borel subsets B of (0,∞). The semigroup {P (t)}t≥0 is stochastic if and only
if its generator (C,D(C)) is the closure of the operator (C,D(C)).

We first study the fixed points of the semigroup, showing that {P (t)}t≥0 has no
more that one invariant density through

Proposition 4. The substochastic semigroup {P (t)}t≥0 can have at most one
invariant density.
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Proof. Recall that u∗ is an invariant density for the semigroup {P (t)}t≥0 if and
only if it is an invariant density for the resolvent operator

Rv := R(1, C)v =

∫ ∞
0

e−tP (t)vdt.

The operator R is substochastic and it satisfies Rv ≥ R1v for any nonnegative v ∈ L1

(see [14]), where

R1v(x) =
1

γ(x)

∫ ∞
x

v(y)eQ(y)−Q(x)+
∫ y
x

1
γ(z)

dzdy, x > 0.

Note that R1 is the resolvent operator R(1, A) of a substochastic semigroup {S(t)}t≥0

with generator

Au(x) =
d(γ(x)u(x))

dx
− ϕ(x)u(x), u ∈ D(C).

Since for any two nonnegative and nonzero v1, v2 ∈ L1 we can find c(vi) > 0 such that∫ ∞
c(vi)

vi(y)dy > 0, i = 1, 2,

we obtain Rvi(x) > 0 for all x < min{c(v1), c(v2)}, i = 1, 2. Now suppose that u1, u2

are densities such that u = u1 − u2 is nonzero. Then both u+ = max{0, u} and u− =
max{0,−u} are nonnegative and nonzero. Thus, R(u+)(x) > 0 and R(u−)(x) > 0 for
x < c and some c > 0. We have

|Ru(x)| = |R(u+)(x)−R(u−)(x)| ≤ R(u+)(x) +R(u−)(x) = R(|u|)(x),

thus the inequality is strict on a set of positive measure, which implies that if u1−u2 6=
0 then

‖Ru1 −Ru2‖1 < ‖R|u1 − u2|‖1 ≤ ‖u1 − u2‖1.

Consequently, the operator R can have at most one invariant density.
Let K be the transition operator on L1 given by

(4.14) Kv(x) =

∫ ∞
0

k(x, y)v(y)dy, v ∈ L1,

where the kernel k is as in (4.9). Observe that

(4.15) Kv(x) =

∫ x

0

h(x− z, z)ϕ(z)

γ(z)
e−Q(z)

∫ ∞
z

v(y)eQ(y)dydz.

A mild condition on the transition operator K, in conjunction with Theorems 3.6 and
5.2 of [32], has interesting consequences for {P (t)}t≥0 as contained in the following
result.

Proposition 5. If the transition operator K is mean ergodic, i.e. for any v ∈ L1,
v ≥ 0 the sequence

1

n

n−1∑
j=0

Kjv
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is convergent in L1, then the semigroup {P (t)}t≥0 is stochastic.
In particular, if K has a strictly positive fixed point, i.e. there is v∗ such that

Kv∗ = v∗ and v∗ > 0 a.e., then K is mean ergodic [12]. Note that a mean ergodic
stochastic operator has a nonzero fixed point.

We now describe invariant densities for the semigroup {P (t)}t≥0 with the help of
fixed points of the operator K.

Theorem 6. Let

H(x, y) =

∫ ∞
x

h(z, y)dz, x > 0.

Suppose that there is a nonnegative solution u∗ of the equation

(4.16) γ(x)u∗(x) =

∫ x

0

H(x− y, y)ϕ(y)u∗(y)dy

such that ϕu∗ ∈ L1. Then the function

(4.17) v∗(x) =

∫ x

0

h(x− y, y)ϕ(y)u∗(y)dy

is a fixed point of the operator K in L1, where K is as in (4.15). Moreover, if u∗ ∈ L1

then u∗ ∈ D(C) and C(u∗) = 0, where C is as in (4.11).
Conversely, if the operator K has a nonnegative fixed point v∗ ∈ L1 then the

function

(4.18) u∗(x) :=
1

γ(x)

∫ ∞
x

eQ(y)−Q(x)v∗(y)dy

is a solution of (4.16) and ϕu∗ ∈ L1.
Proof. Let u∗ be a solution of (4.16) such that ϕu∗ ∈ L1. Since

lim
x→∞

1[y,∞)(x)H(x− y, y) = 0

for each y and 0 ≤ 1[y,∞)(x)H(x− y, y) ≤ 1 for all x, y, we obtain

lim
x→∞

γ(x)u∗(x) = lim
x→∞

∫ ∞
0

1[y,∞)(x)H(x− y, y)ϕ(y)u∗(y)dy = 0,

by the Lebesgue’s dominated convergence theorem. Similarly, we conclude that

lim
x→0

γ(x)u∗(x) = 0.

We have∫ x

0

H(x− y, y)ϕ(y)u∗(y)dy =

∫ x

0

ϕ(y)u∗(y)dy −
∫ x

0

∫ x−y

0

h(z, y)dzϕ(y)u∗(y)dy.

Thus, γu∗ ∈ AC and

(4.19)
d

dx
(γ(x)u∗(x)) = ϕ(x)u∗(x)−

∫ x

0

h(x− y, y)ϕ(y)u∗(y)dy.
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The functions ϕu∗ and v∗ are integrable. Consequently, if u∗ ∈ L1 then u∗ ∈ D(C)
and C(u∗) = 0. Since

v∗(x) = ϕ(x)u∗(x)− d

dx
(γ(x)u∗(x)) = −e−Q(x) d

dx
(eQ(x)γ(x)u∗(x)),

we obtain∫ ∞
z

v∗(x)eQ(x)dx = −
∫ ∞
z

d

dx
(eQ(x)γ(x)u∗(x))dx = eQ(z)γ(z)u∗(z),

which shows that Kv∗(y) = v∗(y), by (4.15).
We now turn to the converse part. Suppose that u∗ is as in (4.18), where v∗ is a

fixed point of K. Since Q is non-increasing and v∗ is integrable, we see that

lim
x→∞

γ(x)u∗(x) = 0

and that ϕu∗ ∈ L1. It is easily seen that u∗ satisfies equation (4.19). Integrating
equation (4.19) with respect to x from z to ∞ leads to∫ ∞

z

d

dx
(γ(x)u∗(x))dx =

∫ ∞
z

ϕ(x)u∗(x)dx−
∫ ∞
z

∫ x

0

h(x− y, y)ϕ(y)u∗(y)dydx

and changing the order of integration in the last integral gives∫ ∞
z

∫ x

0

h(x− y, y)ϕ(y)u∗(y)dydx =

∫ z

0

∫ ∞
z

h(x− y, y)ϕ(y)u∗(y)dxdy

+

∫ ∞
z

∫ ∞
y

h(x− y, y)ϕ(y)u∗(y)dxdy.

.

We have ∫ z

0

∫ ∞
z

h(x− y, y)ϕ(y)u∗(y)dxdy =

∫ z

0

H(z − y, y)ϕ(y)u∗(y)dy

and ∫ ∞
z

∫ ∞
y

h(x− y, y)ϕ(y)u∗(y)dxdy =

∫ ∞
z

ϕ(y)u∗(y)dy.

Combining these we conclude that u∗ satisfies (4.16).
The following theorem guarantees that {P (t)}t≥0 is stochastic and its strong

convergence to a unique stationary density u∗ that is given explicitly.
Theorem 7. Suppose that the operator K as in (4.15) has an invariant density

v∗ > 0 a.e. and let

c :=

∫ ∞
0

1

γ(x)

∫ ∞
x

eQ(y)−Q(x)v∗(y)dydx <∞.

Then the semigroup {P (t)}t≥0 is stochastic and for each initial density v we have

lim
t→∞

‖P (t)v − u∗‖1 = 0,

where

u∗(x) =
1

cγ(x)

∫ ∞
x

eQ(y)−Q(x)v∗(y)dy
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is the unique stationary density of {P (t)}t≥0.
Proof. By Proposition 5, the semigroup {P (t)}t≥0 is stochastic. From Theorem 6

it follows that u∗ ∈ D(C) and C(u∗) = 0. Thus, u∗ is an invariant density for the
stochastic semigroup {P (t)}t≥0 and it is unique, by Proposition 4. Since v∗(x) > 0
for a.e. x > 0, we conclude that u∗(x) > 0 for all x > 0. From assumptions (4.3)
and (4.4) it follows that there is a δ0 such that ϕ(y) > 0 for y ∈ (0, δ0). This and
(4.17) imply that∫ ∞

0

∫ ∞
0

p(x, y)ϕ(y)dydx > 0, where p(x, y) = 1(0,x)(y)h(x− y, y).

Consequently, we can find t > 0 such that the operator P (t) is partially integral [14]
and the result follows from Theorem 1.

We conclude this section with sufficient conditions for mean ergodicity of the
transition operator K.

Proposition 8. Let K be a transition operator K with a bounded kernel k.
Suppose that there exist a nonnegative measurable function V : (0,∞)→ [0,∞) which
is bounded on bonded subsets of (0,∞) and constants a, d > 0 such that

(4.20)

∫ ∞
0

V (x)k(x, y)dx ≤ V (y)− 1 + a1(0,d)(y), y > 0.

Then the operator K is mean ergodic on L1.
Proof. Let Zn, n ≥ 0, be a Markov chain with stochastic kernel K given by

K(y,B) =

∫
B

k(x, y)dx, y > 0, B ∈ B((0,∞)).

Recall that a probability measure µ is invariant for the chain if and only if the measure
µ satisfies the equation

µ(B) =

∫ ∞
0

K(y,B)µ(dy)

for all Borel measurable sets B. We have

µ(B) =

∫
B

∫ ∞
0

k(x, y)µ(dy)dx.

Thus each invariant probability measure is absolutely continuous with respect to the
Lebesgue measure on (0,∞). Since K is the transition operator corresponding to K,
we have ∫

B

Kjv(x)dx =

∫ ∞
0

Kj(y,B)v(y)dy, B ∈ B((0,∞)),

where K1(y,B) = K(y,B) and

Kj(y,B) =

∫ ∞
0

Kj−1(z,B)K(y, dz), y > 0, j ≥ 2.

From Theorem 1 and Lemma 1 of [31] it follows that there exist a finite number of in-
variant probability measures µ1, . . . , µN and a finite number of nonnegative functions
L1, . . . LN such that

∑N
i=1 Li(y) = 1 and

(4.21)
1

n

n∑
j=1

Kj(y,B)→
N∑
i=1

Li(y)µi(B)
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for all y and all Borel sets B. Let v1, . . . , vN be the densities of the invariant measures
µ1, . . . , µN . Now let v ∈ L1. From (4.21) and the Lebesgue dominated convergence
theorem it follows that

lim
n→∞

∫
B

1

n

n∑
j=1

Kjv(x)dx =

∫
B

N∑
i=1

∫ ∞
0

Li(y)v(y)dyvi(x)dx,

for all Borel B. Moreover, the sequence 1
n

∑n
j=1K

jv is bounded in L1. Thus, it is

weakly convergent in L1 and, by the mean ergodic theorem, it converges in L1.
We now apply the last result to our transition operator K.
Corollary 9. Let K be the transition operator as in (4.15) with bounded h.

Suppose that the function

m1(y) =

∫ ∞
0

xh(x, y)dx, y > 0,

is bounded on bounded subsets of (0,∞). If

(4.22) lim sup
y→∞

eQ(y)

∫ y

0

(
m1(z)

ϕ(z)

γ(z)
− 1

)
e−Q(z)dz < 0,

then the operator K is mean ergodic.
Proof. Since K has kernel k given by (4.9), we obtain

k(x, y) ≤ c1eQ(y)

∫ y

0

ϕ(z)

γ(z)
e−Q(z)dz = c1, x, y > 0,

where c1 is the upper bound for h. By Proposition 8 it is sufficient to check that
the function V (x) = x, up to a multiplicative constant, satisfies condition (4.20). We
have ∫ ∞

z

V (x)h(x− z, z)dx = m1(z) + z, z > 0.

Thus ∫ ∞
0

V (x)k(x, y)dx = eQ(y)

∫ y

0

(m1(z) + z)
ϕ(z)

γ(z)
e−Q(z)dz

for all y > 0. Since

y = eQ(y)

∫ y

0

z
ϕ(z)

γ(z)
e−Q(z)dz + eQ(y)

∫ y

0

e−Q(z)dz,

we obtain∫ ∞
0

V (x)k(x, y)dx− V (y) = eQ(y)

∫ y

0

(
m1(z)

ϕ(z)

γ(z)
− 1

)
e−Q(z)dz,

which is a bounded function on sets of the form (0, d).
Remark 4. Observe that if Q(∞) = 0 and

lim sup
z→∞

m1(z)ϕ(z)

γ(z)
< 1
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then condition (4.22) holds, since we can find z0 > 0 and δ > 0 such that

m1(z)
ϕ(z)

γ(z)
− 1 ≤ −δ for z ≥ z0,

which implies that

eQ(y)

∫ y

y0

(
m1(z)

ϕ(z)

γ(z)
− 1

)
e−Q(z)dz ≤ −aeQ(y)−Q(y0)(y − y0)

for all y ≥ y0 ≥ z0 with the right-hand side going to −∞.
If Q(∞) = −∞ and

lim sup
z→∞

(
m1(z)− γ(z)

ϕ(z)

)
< 0

then condition (4.22) holds as well by d’Hospital’s rule.

4.2. Exponentially distributed bursts. Experimental findings in populations
of cells indicate that the burst size is often exponentially distributed [33] so we now
consider

(4.23) h(x, y) =
1

b
e−x/b, x, y > 0,

where b > 0. The operator K as defined in (4.15) then takes the form

Kv(x) =

∫ x

0

1

b
e−(x−z)/bϕ(z)

γ(z)
e−Q(z)

∫ ∞
z

v∗(y)eQ(y)dydz.

Note that the integrable function

v∗(x) = e−x/b−Q(x)

is a fixed point of the operator K, since

Kv∗(x) = e−x/b
∫ x

0

ϕ(z)

γ(z)
e−Q(z)dz = e−x/b−Q(x).

Again, an explicit stationary solution was recently obtained in [1], and we establish
convergence to this stationary state with the following result.

Corollary 10. Assume that conditions (4.3) and (4.4) hold and that h is
exponential as in (4.23) with b > 0. Suppose that

(4.24) c :=

∫ ∞
0

1

γ(x)
e−x/b−Q(x)dx <∞,

∫ ∞
0

e−x/b−Q(x)dx <∞.

Then the semigroup {P (t)}t≥0 is stochastic and for each initial density v we have

lim
t→∞

‖P (t)v − u∗‖1 = 0,

where

(4.25) u∗(x) =
1

cγ(x)
e−x/b−Q(x)
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is the unique stationary density of {P (t)}t≥0.
Remark 5. Note that if Q(0) =∞ and

lim
x→∞

ϕ(x)

γ(x)
<

1

b
,

then the function x 7→ e−x/b−Q(x) is integrable on (0,∞). If, additionally,

lim inf
x→∞

γ(x) > 0, lim
x→0

e−Q(x)

γ(x)r
<∞, and

∫ δ

0

γ(x)r−1dx <∞

for some δ, r > 0, then condition (4.24) holds. Furthermore, if it should happen that
b, γ(x) and u∗(x) are known or can be approximated from data, then it is possible to
estimate ϕ(x) from

(4.26) ϕ(x) =
1

b
γ(x) +

(γ(x)u∗(x))′

u∗(x)
.

Finally, note that if ϕ is assumed to be bounded, then u∗ has an exponential tail,
from which we can deduce the parameter b.

Remark 6 (Bifurcation in the continuous case). As in the discrete formulation of
the model we can use relation (4.26) to derive bifurcation properties of the stationary
density as a function of the relevant parameters. Namely, the number of extrema are
linked to the number of solutions of

ϕ(x) =
γ(x)

b
+ γ′(x).

In all examples below, we consider a linear degradation function, γ(x) = γx with
γ > 0.

Example 6. Consider the function ϕ of the form

(4.27) ϕ(x) = λ
1 + ΘxN

Λ + ∆xN
=
λ

∆
+ λ

(
1− Λ

∆

)
1

Λ + ∆xN
,

where λ,Λ,∆, N are positive constants and Θ ≥ 0. Then

Q(x) = c1 −
λ

γΛ
log(x) +

λ

N∆γ

(
∆

Λ
−Θ

)
log(Λ + ∆xN ),

where c1 is a constant. The stationary density is given by

(4.28) u∗(x) = (cγ)−1e−x/bxλ(γΛ)−1−1(Λ + ∆xN )θ,

where

(4.29) θ =
λ

N∆γ

(
Θ− ∆

Λ

)
.

This solution has been extensively studied in terms of numbers of maxima (P-bifurcation)
in [15] when Θ = 1. When Θ = ∆ = Λ = 1 the density u∗ is that of a gamma distri-
bution, as obtained in [6].

Example 7. Consider the case of linear regulation with the function ϕ of the form

ϕ(x) = λ0 + λx,
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where λ0, λ are nonnegative constants. If

1

b
>
λ

γ
and λ0 > 0,(4.30)

then u∗ is integrable and is given by the gamma distribution

(4.31) u∗(x) =
1

Γ(λ0/γ)

(
1

b
− λ

γ

)λ0/γ

x
λ0
γ −1e−( 1

b−
λ
γ )x,

which is a continuous approximation of the negative binomial distribution previously
obtained, as in [27].

4.3. Other examples. In this subsection we consider some more exactly solv-
able examples. The class of examples we provide generalizes the exponentially dis-
tributed case of h. Let ν(y) be a positive, decreasing, and absolutely continuous
function on (0,∞) such that ν(y)→ 0 as y →∞. Consider the function

(4.32) h(x, y) = −ν
′(x+ y)

ν(y)
, y, z > 0.

Then for each y the function x 7→ h(x, y) is a density and

h(x− y, y) = −ν
′(x)

ν(y)
, x > y.

The operator K can be thus rewritten as

Kv(x) = −
∫ x

0

ν′(x)

ν(z)

ϕ(z)

γ(z)
e−Q(z)

∫ ∞
z

v(y)eQ(y)dydz.

It is easily seen that if the function

v∗(x) = −ν′(x)e−Q(x)

is integrable then Kv∗(x) = v∗(x), thus we obtain the following.
Corollary 11. Let h be as in (4.32). Suppose that

c :=

∫ ∞
0

ν(x)

γ(x)
e−Q(x)dx <∞ and −

∫ ∞
0

ν′(x)e−Q(x)dx <∞.

Then the semigroup {P (t)}t≥0 is stochastic and for each initial density v we have

lim
t→∞

‖P (t)v − u∗‖1 = 0,

where

u∗(x) =
ν(x)

cγ(x)
e−Q(x)

is the unique stationary density of {P (t)}t≥0.
Remark 7 (Bifurcation in the continuous case–again). As before (see Remark 6),

the number of extrema are linked to the number of solutions of

ϕ(x) = −ν
′(x)

ν(x)
+ γ′(x).
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Note that if it should happen that ν(x), γ(x) and u∗(x) are known or can be approx-
imated from data, then it is possible to estimate ϕ(x) from

ϕ(x) = −ν
′(x)

ν(x)
γ(x) +

(γ(x)u∗(x))′

u∗(x)
.

If m1(x) =
∫∞

0
zh(z, x)dz <∞, then only the knowledge of m1(x) is sufficient as

−ν
′(x)

ν(x)
=

1 +m′1(x)

m1(x)
.

In the examples below, we take a linear degradation function γ(x) = γx, with γ > 0.

Example 8. Suppose that the function ν is of the form

ν(x) = (α+ x)−β

where α, β > 0 and that the function ϕ is of the form (4.27). If

β >
λΘ

γ∆
+ 1

then the assumptions of Corollary 11 are satisfied and the stationary density u∗ is
given by

u∗(x) =
1

cγ
(α+ x)−βxλ(γΛ)−1−1(Λ + ∆xN )θ,

where θ is as in (4.29).
Example 9. Suppose that the function ν is of the form

ν(x) = e−(αx+βx2),

where α, β > 0. Consider the case of linear regulation with the function ϕ of the form

ϕ(x) = λ0 + λ1x,

where λ0, λ1 are nonnegative constants. If

λ0 > 0,

then u∗ is integrable and is given by

u∗(x) =
1

cγ
x
λ0
γ −1e−(α−λ1γ )x−βx2

.

Consider the case of quadratic regulation with the function ϕ of the form

ϕ(x) = λ0 + λ1x+ λ2x
2,

where λ0, λ1, λ2 are nonnegative constants. If

β >
λ2

2γ
and λ0 > 0,



DYNAMICS OF STOCHASTIC GENE EXPRESSION MODELS 21

then u∗ is integrable and is given by

u∗(x) =
1

cγ
x
λ0
γ −1e−(α−λ1γ )x−(β−λ22γ )x2

.

Example 10. Suppose that the function ν is of the form

ν(x) = (α− x)β ,

where α, β > 0, for all x < α, and ν(x) = 0 for x ≥ α. Suppose the function ϕ is given
by (4.27) where λ,Λ,∆, N are positive constants and Θ ≥ 0. Then the stationary
density u∗ is integrable and is given by, for all x < α,

u∗(x) =
1

cγ
(α− x)βxλ(γΛ)−1−1(Λ + ∆xN )θ,

where θ is as in (4.29). Convergence is obtained in the state space (0, α).

5. Conclusions and summary. In this paper we have presented both a discrete
Markov process formulation as well as a continuous model formulation for bursting
gene expression. Our development of the discrete model formulation in Section 3.1
allowed us to prove a very general convergence result in Theorem 2 and then to use
that result to explore a variety of examples in Section 3.2 when the burst amplitude
is geometrically distributed. In Section 4 we developed the analogous continuous
model for bursting expression. Section 4.1 contains the general development with
Proposition 4 limiting the number of invariant densities of the semigroup {P (t)}t≥0,
while Proposition 5 uses mean ergodicity of the transition operator K to show that
{P (t)}t≥0 is stochastic. Theorems 6 and 7 give criteria for a unique stationary den-
sity u∗ of {P (t)}t≥0 and for convergence to that stationary density. In Section 4.2
we have used these results in a number of specific examples when the burst ampli-
tudes are exponentially distributed–a situation often noted experimentally. Section
4.3 concludes with an examination of a generalization of the exponential distribution
of burst amplitudes.
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[32] M. Tyran-Kamińska, Substochastic semigroups and densities of piecewise deterministic
Markov processes, J. Math. Anal. Appl., 357 (2009), pp. 385–402.

[33] X. S. Xie, P. J. Choi, G.-W. Li, N. K. Lee, and G. Lia, Single-molecule approach to molecular
biology in living bacterial cells, Annu. Rev. Biophys., 37 (2008), pp. 417–444.


