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Abstract In mammals, female germ cells are sheltered within somatic struc-
tures called ovarian follicles, which remain in a quiescent state until they get
activated, all along reproductive life. We investigate the sequence of somatic
cell events occurring just after follicle activation. We introduce a nonlinear
stochastic model accounting for the joint dynamics of two cell types, either
precursor or proliferative cells. The initial precursor cell population transi-
tions progressively to a proliferative cell population, by both spontaneous and
self-amplified processes. In the mean time, the proliferative cell population
may start either a linear or exponential growing phase. A key issue is to deter-
mine whether cell proliferation is concomitant or posterior to cell transition,
and to assess both the time needed for all precursor cells to complete tran-
sition and the corresponding increase in the cell number with respect to the
initial cell number. Using the probabilistic theory of first passage times, we
design a numerical scheme based on a rigorous Finite State Projection and
coupling techniques to assess the mean extinction time and the cell number
at extinction time. We also obtain analytical formulas for an approximating
branching process. We calibrate the model parameters using an exact likeli-
hood approach using both experimental and in-silico datasets. We carry out a
comprehensive comparison between the initial model and a series of submod-
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els, which help to select the critical cell events taking place during activation.
We finally interpret these results from a biological viewpoint.

Keywords stochastic cell population model · first passage time · finite state
projection · stochastic coupling techniques · maximum likelihood estimate ·
embedded Markov chain
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1 Introduction

In mammals, the number of oocytes (egg cells) available for a female through-
out her reproductive life is fixed once for all, during the fetal or perinatal
period Monniaux et al. (2018). Dormant oocytes are sheltered within somatic
structures called ovarian follicles, which remain in a quiescent state until they
get activated and undergo a longstanding process of growth and maturation
ending by ovulation (release of a fertilizable oocyte). Growth initiation is asyn-
chronous among follicles, so that all developmental stages can be observed in
the ovaries at a given time, and follicles can remain quiescent for as long as
tens of years Reddy et al. (2010).

In the earliest stages of development, ovarian follicles are made up of the
oocyte and a single layer of surrounding somatic cells. The initial cell number
is on the order of ten or several of tens according to the species and is quite
variable between follicles. Such a variability is inherited from the mechanism
underlying the formation of primordial follicles Monniaux (2018); Sawyer et al.
(2002), which assemble from the fragmentation of multi-oocyte structures (the
germ cell cysts) and retrieve more or less (somatic) cells.

The activation of primordial (quiescent) follicles is characterized by three
main processes Picton (2001): (i) an irreversible transition of the somatic cell
phenotypes, characterized by a change in their shape, from flattened (precursor
cells) to cuboidal (proliferative cells); (ii) an increase in the number of somatic
cells by cell division and (iii) the awakening and associated enlargement of the
oocyte. The activation phase is ended when all somatic cells have transitioned,
at which time the mono-layer developmental stage is completed, and somatic
cells will go on proliferating and build up several concentric layers Fortune
(2003).

In this work, we focus on the sequence of events occurring just after the ini-
tiation of follicle growth. A key issue is to determine whether cell proliferation
is concomitant or posterior to cell shape change, and to assess both the time
needed for all precursor cells to complete transition and the corresponding
increase in the cell number with respect to the initial cell number.

We introduce a model based on a formalism of cell population dynamics ac-
counting for both cell transition and division. Within such a formalism, linear
models have been built up on the branching property, disregarding cellular in-
teractions Kimmel and Axelrod (2015); Harris (1963), while nonlinear models
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have accounted for interactions among different cell populations (e.g., typi-
cally, a feedback from differentiated cells onto precursor cells) either to ensure
homeostasis, as in dynamical models for blood cells Getto and Marciniak-
Czochra (2015); Stiehl and Marciniak-Czochra (2017); Pujo-Menjouet (2016),
or to achieve a proper developmental sequence, as in dynamical models for neu-
ral cells Freret-Hodara et al. (2016). On our side, we are interested in assessing
the duration of the activation process, and in ordering the events taking place
during activation. A natural concept in probability theory to investigate these
issues is the first passage time theory Darling and Siegert (1953); Van Kampen
(1992), which aims to characterize the statistics of random events related to
some particular outcomes. The analysis of first passage times are becoming
more and more popular in mathematical biology Chou and D’Orsogna (2014);
Castro et al. (2018), to quantify random times needed to reach a given final
state, such as population extinction for instance. Typically, the parameters of
cell dynamics models are calibrated using time series of cell counts sorted into
different cell types Marr et al. (2012); Glauche et al. (2007). In contrast, in the
case of early folliculogenesis, precursor and proliferative cell numbers are not
available directly as a function of time, but only in relation with other mor-
phological variables such as the oocyte and follicle diameters Braw-Tal and
Yossefi (1997); Gougeon and Chainy (1987); Lundy et al. (1999); Meredith
et al. (2000), so that we lack kinetic information. Yet, thanks to the discrete-
time embedded Markov chain, we could apply here classical statistical tools
like the maximum likelihood Wilkinson (2011), and related parameter iden-
tifiability concept Raue et al. (2009), by using the information on the state
space alone.

Our model allows us to study the joint dynamics of the precursor cells F
and proliferative cells C within a single follicle, whose populations are ruled
by four types of possible cell events. Two cell events occur at the expense
of the precursor cells, which are consumed during their transition : (i) R1

is the spontaneous transition of precursor cells into proliferative cells, whose
rate α1F is linearly proportional to the number of precursor cells; (ii) R2 is
the auto-amplified transition of precursor cells into proliferative cells, which
occurs at rate β1

FC
F+C . This event represents the feedback of proliferative cells

onto the transition of the precursor cells. Two other cell events increase the
proliferative cell population without affecting the precursor cell population: (i)
R3 is an asymmetric division of precursor cells F (giving rise to one precursor
cell and one proliferative cell), which occurs at rate α2F ; (ii)R4 is a symmetric
division of the proliferative cells C (giving rise to two proliferative cells), which
occurs at rate γC.
These four cell events are the building blocks of our main modelMFC , which
is summarized below :

Cell events Rate
R1 : (F,C)→ (F − 1, C + 1), α1F,
R2 : (F,C)→ (F − 1, C + 1), β1

FC
F+C ,

R3 : (F,C)→ (F,C + 1), α2F,
R4 : (F,C)→ (F,C + 1), γC .

(MFC)



4 Frédérique Clément et al.

Cell events R1 and R4 constitute the fundamental ingredients involved in
the activation process. We also consider two additional cell events, R3 and
R4, which are not only intended to enrich the model behavior, but are also
substantiated by biological observations.
Cell event R3 considers that flattened (precursor) cells may divide before tran-
sition, which is consistent with experimental studies where KI67 staining (a
marker of cell cycle progression) was detected in some flattened cells Da Silva-
Buttkus et al. (2008). Since the number of flattened cells is non increasing,
one can envisage the existence of self-renewing asymmetric divisions in flat-
tened cells, giving birth to one proliferative cell (and keeping the precursor
cell number unchanged).
Cell event R2 accounts for a possibly auto-amplified acceleration in cell shape
transitions, which could result from the molecular mechanisms underlying fol-
licle activation and establishing a dialog between the oocyte and somatic cells
Monniaux (2016). In brief, the initiation signal (mTORC1) is first perceived
by somatic cells Zhang et al. (2014), which then start stimulating the oocyte
through specific signaling pathways (KIT-Ligand cytokine). In turn, once ac-
tivated, the oocyte signals to the somatic cells through factors of the TGFβ
family Knight and Glister (2006) (mainly GDF9 and BMP15). This molecular
dialog settles a positive feedback loop, which can be represented by an auto-
amplified transition rate. In sheep, there exist natural mutations affecting this
molecular dialog (disruption of either the GDF9 or BMP15 ligand, or the re-
ceptor to BMP15). Introducing cell event R2 can help to investigate possible
differences in the activation process in wild-type compared to mutant strains.
More specifically, we have access to experimental cell numbers (courtesy of
Ken McNatty) obtained either from a wild-type strain (Ile-de-France) or a
mutant strain for BMP15R (Booroola), whose follicle development is known
to be clearly different in the multi-layer stages Lundy et al. (1999), especially
as far as cell dynamics. Whether cell dynamics is also affected during the
mono-layer stage remains unclear Reader et al. (2012), which is an additional
motivation for this work.

All the reactions rates (α1, β1, α2 and γ) are non-negative. At initial time,
there are only precursor cells, and the initial condition is chosen as a random
positive integer variable, in consistency with the observed biological variability.

In the following, we will use different submodels derived from the full model
MFC , by removing either one or several cell events (hence setting to zero the
corresponding parameter values β1, α2 and/or γ). We will name these submod-
els by explicitly mentioning the remaining events. For instance, model (R1,R3)
consists only of the spontaneous cell transition event and asymmetric cell di-
vision (β1 = γ = 0), while model (R1,R4) is composed of the spontaneous cell
transition event and asymmetric cell division (β1 = α2 = 0).

Model MFC can be mathematically formulated either with Ordinary Dif-
ferential Equations (ODEs) or Continuous time Markov chain (CTMC) Gratie
et al. (2013).
The stochastic description is especially appropriate when dealing with a small
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number of cells. Even if the cell numbers in activating follicles are small, a
deterministic formulation of model MFC can still be convenient to get in-
sight into the transient behavior of the cell populations and the parameter
influence on the model outputs. Using the stochastic version of model MFC ,
we can illustrate the dynamics of both the precursor and proliferative cells
(Figure 1). The C population grows as the F population decreases until ex-
tinction (top-left panel), and the proportion of proliferative cells pC := C

F+C
increases monotonously from 0 to 1 (bottom-left panel). In the (C,F ) phase
plane (top-right panel), we can observe that the number of precursor cells
remains constant (aligned red or black points on the horizontal line (k, F ),
k ∈ N) whenever there is a division event (R3 or R4). In contrast, whenever
there is a transition event (R1 or R2), the number of precursor cells decreases
by one, as illustrated by the jump from the current line ((k, F ), k ∈ N) to
the lower one ((k, F − 1), k ∈ N). Hence, in this simulation, we observe a
sequence of transition and division events (which appear to be here mainly
spontaneous transitions R1 and asymmetric divisions R3 due to the specific
parameter choice). If we are only given the sequence of events in this plane,
we cannot discriminate R1 from R2, neither R3 from R4. Note that, depend-
ing on the initial condition, some parts of the phase plane cannot be reached.
The trajectories can also be observed in the (C, pC) phase plane (bottom-right
panel). In this case, the trajectories remain on the curves parameterized by
((k, k

F+k ), k ∈ N) if a division event (R3 or R4) occurs, whereas they move to

the upper curves parameterized by ((k, k
F−1+k ), k ∈ N) whenever a transition

event (R1 or R2) occurs.

The manuscript is organized as follows. After introducing the mathemati-
cal definitions in Section 2, we analyze both the deterministic and stochastic
versions of model MFC in Section 3. In subsection 3.1, we obtain the an-
alytical solutions of the deterministic model, and explore the parameter in-
fluence on the model outputs. Subsection 3.2 deals with the Markov chain
formulation of model MFC . In the linear case (β1 = 0), we obtain analyti-
cal formulas for the mean extinction time. In the nonlinear case, we design
a numerical scheme based on a rigorous Finite State Projection (see Munsky
and Khammash (2006); Kuntz (2017)) and coupling techniques to assess the
mean extinction time. In both cases, we study the sensitivity of the extinction
time, as well as the cell number at extinction time, with respect to the pa-
rameter values. In section 4, using the embedded Markov chain, we calibrate
the parameters of the different submodels and full model MFC from our ex-
perimental, time-free datasets, and analyze the practical identifiability in each
case. From data-fitting, we manage to retrieve hidden kinetic information and
provide some biological interpretations of out results. We conclude in section
5.
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Fig. 1 Illustration of the dynamics generated by model MFC . The dynamics of
the precursor and proliferative cells are computed using a Gillespie SSA algorithm Gillespie
(2001) with the parameter values: α1 = 1, β1 = 0.01, α2 = 10, γ = 0.001 and a deterministic
initial condition F (0) = 4. In each panel, the black or gray lines represent 9 different
trajectories of the process and the red line corresponds to one specific trajectory. Top-
left panel: Number of precursor F (black lines) and proliferative C (gray lines) cells as a
function of time. Bottom-left panel: Proportion pC of proliferative cells as a function of
time. Top-right panel: Number of precursor cells F as a function of the number proliferative
cells C. Bottom-right panel: Proportion of proliferative cells pC as a function of the number
of proliferative cells C.

2 Model definition

Markov chain formulation On a probability space (Ω,F ,P), let the initial
number of flattened cells F0 be a positive integer random variable. The pop-
ulation of precursor cells F and proliferative cells C follows the Stochastic
Differential Equation (SDE) below:

Ft = F0 − Y1
(∫ t

0

α1Fsds

)
− Y2

(∫ t

0

β1
FsCs
Fs + Cs

ds

)
,

Ct = Y1
(∫ t

0

α1Fsds

)
+ Y2

(∫ t

0

β1
FsCs
Fs + Cs

ds

)
+ Y3

(∫ t

0

α2Fsds

)
+ Y4

(∫ t

0

γCsds

)
. (1)

where Yi, for all i = 1, 2, 3, 4, are mutually independent standard Poisson
processes. X = (Xt)t≥0, with Xt := (Ft, Ct) for all t ≥ 0, denotes the solu-
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tion of (1). (Ft)t≥0 denotes the canonical filtration generated by the process X.

We can also see X as a continuous-time Markov chain with countable state
space S := N2\{(0, 0)} and transition matrix Q := (q(x, y))x,y∈S , with for all
(f, c) ∈ S,

q ((f, c), (f − 1, c+ 1)) = α1f + β1
fc

f + c
,

q ((f, c), (f, c+ 1)) = α2f + γc.

We recall that Q is linked to the infinitesimal generator L by the Dynkin’s
formula (Theorem 2.2, p.380, Brémaud (2013)):

Lg(x) =
∑

y∈S,y 6=x

q(y, x)g(y)− q(x)g(x), where q(x) =
∑

y∈S,y 6=x

q(x, y).

Thus, the infinitesimal generator L of X is given by

Lg(f, c) = (α1f + β1
fc

f + c
) [g(f − 1, c+ 1)− g(f, c)]

+ (α2f + γc) [g(f, c+ 1)− g(f, c)] , (2)

for all g bounded functions and for all (f, c) ∈ S.
In the whole study, we will need the following hypotheses:

Hypothesis 1 The spontaneous activation rate α1 is positive.

Hypothesis 2 The initial condition F0 is L2-integrable.

For specific results, we will also need an additional hypothesis:

Hypothesis 3 The spontaneous activation rate α1 is strictly greater than the
proliferation rate γ: α1 > γ.

With Hypothesis 2, we apply Theorem 1.22 of Anderson and Kurtz (2015)
(p.12-13) and deduce that the process Mg

t defined as

Mg
t := g(Xt)− g(X0)−

∫ t

0

Lg(Xs)ds (3)

is a Ft-martingale, for all t ≥ 0.

Note that the F process is a non-negative decreasing process. To study the
hitting time of the state F = 0, we introduce the following definition

Definition 1 Let τF0 be the extinction time of the precursor cell population F

τF0 := inf{t ≥ 0; Ft = 0|F0} . (4)

The number of proliferative cells C at t = τF0 is CτF0 .
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Mean-field formulation To get some insight into the model, we describe the
mean-field version of the model MFC , given by the set of ODE below:{

d
dtf(t) = −α1f(t)− β1f(t) c(t)

f(t)+c(t) ,
d
dtc(t) = (α1 + α2)f(t) + β1f(t) c(t)

f(t)+c(t) + γc(t),
(5)

with the initial condition (f(0), c(0)) = (f0, 0), with f0 ∈ R+.

3 Model analysis

In this section we analyze the cell dynamics of the precursor and proliferative
cells both for the deterministic and stochastic versions of model MFC . We
start by solving analytically the deterministic formulation, and investigate
the effect of each parameter on the model outputs. Then, we study the mean
extinction time of the precursor cell population and the number of proliferative
cells at that time.

3.1 Analysis of the deterministic model

From the ODE sytem (5), we deduce the change in the proliferative cell pro-

portion pC(t) := c(t)
f(t)+c(t) :

d

dt
pC(t) = α1 + α2 − (α1 + 2α2 − β1 − γ)pC(t) + (α2 − β1 − γ)pC(t)2

= (α2 − β1 − γ)(pC(t)− 1)(pC(t)− α1 + α2

α2 − β1 − γ
). (6)

From ODEs (5) and (6), using the classical method of separation of variables,
we can compute the analytical expressions for the proliferative cell proportion
pC(t), proliferative cell number c(t) and precursor cell number f(t):

Proposition 1 The solution of the ODE system (5) is, for all t ≥ 0,

f(t) = f0 exp

(
−α1t− β1

∫ t

0

pC(s)ds

)
,

c(t) = f0

(
exp

(
α2t+ (γ − α2)

∫ t

0

pC(s)ds

)
− exp

(
−α1t− β1

∫ t

0

pC(s)ds

))
.

In addition, the solution of ODE (6) is

pC(t) =
1− exp (−(α1 + β1 + γ)t)

1− α2−β1−γ
α1+α2

exp (−(α1 + β1 + γ)t)
. (7)
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Remark 1 The total cell number verifies

n(t) := f(t) + c(t) = f0 exp

(
α2t+ (γ − α2)

∫ t

0

pC(s)ds

)
.

As the proliferative cell proportion pC converges to 1, the total cell number
grows exponentially, first at rate α2 and then at rate γ.

We illustrate the changes in the state variables along time on Figure 2, for
different parameter configurations corresponding to different submodels. The
transition kinetics of the precursor cells can either follow an exponential decay
when β1 is zero (or much smaller than α1), or a sharper transition when β1
is larger than α1, with a sigmoid-like shape and an inflexion point (top-left
panel). The growth kinetics of the proliferative cells can be characterized by
three types of behavior (top-middle and top-right panels):

– a saturated growth with steadily decreasing speed with submodels (R1)
and (R1,R3),

– an exponential growth as long as γ > 0 with submodel (R1,R4),
– a logistic growth when the feedback term is strong enough (submodel

(R1,R2)).

The growth kinetics of the total cell number behaves accordingly (bottom-
right panel), with three possible patterns: exponential growth, saturated growth
for submodel (R1), and steadiness for submodel (R1,R2). Finally, the propor-
tion pC (bottom-left panel) may either increase in a saturated manner (with
steadily decreasing speed, submodels (R1) and (R1,R3)), or in a sigmoid-like
manner (with a change in the acceleration sign) if β1 or γ are high enough.
The inflexion point of t 7→ pC(t) can be computed from the analytical solution
(7):

p̄C =
α1 + 2α2 − (β1 + γ)

2α2 − 2(β1 + γ)
.

Note that according to the observed variables, the submodels cannot be distin-
guished from one another, or, alternatively, different parameter values (within
a same submodel) may lead to identical outputs. Indeed, the changes in the
precursor cell population are independent of parameters α2, γ, and, more strik-
ingly, parameters β1 and γ cannot be separated in the analytical solution (7),
leading to the same kinetic patterns as long as the combination γ+β1 remains
unchanged.

From Proposition 1, we deduce that pC is a strictly increasing function,
hence we can invert the pC function and deduce that ∀t ∈ R+,∃!p ∈ [0, 1),
such that

t(p) = p−1C (p) =
−1

(α1 + β1 + γ)
ln

(
1− p

1− pα2−β1−γ
α1+α2

)
. (8)
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Fig. 2 Parameter influence on the outputs of the deterministic model. From
ODEs (5) and (6), we compute numerically (using the Python solver odeint from the package
scipy.integrate), for different parameter values, the different model outputs as a function of
time. Top-left panel: precursor cell number f(t). Top-middle panel: proliferative cell number
c(t), with a zoom insert in the top-right panel. Bottom-left panel: proliferative cell proportion
pC(t). Bottom-middle panel: total cell number n(t). The legend insert specifies the (non-zero)
parameter values corresponding to each submodel and the color code. Blue line: submodel
(R1) with α1 = 20; green line: submodel (R1,R4) with α1 = 1 and γ = 50 ; black dashed
line: submodel (R1,R2) with α1 = 1 and β1 = 50 ; orange dashed line: submodel (R1,R3)
with α1 = 1 and α2 = 100; red dotted line: submodel (R1,R3) with α1 = 1 and α2 = 50.
In each case, the initial number of precursor cells is fixed to f0 = 8.

3.2 Analysis of the extinction of the precursor cell population

To simplify the proofs, we will consider in the following that the initial condi-
tion is a deterministic value f0 ∈ N∗. All the proofs can be generalized to the
random F0 case by conditioning by the law of F0.

3.2.1 Analytical expressions in the linear case

When β1 is zero, the process X is linear, and we can compute the law of the
extinction time. In the case when, in addition, either α2 or γ is zero, or both
are zero, the mean number of proliferative cells at extinction time can also be
computed.
In this subsection we will write XL

t = (FLt , C
L
t ) the solution of the SDE (1)

when β1 = 0 and τf0L the associated extinction time of the population FLt :

τf0L := inf{t; FLt = 0|f0} . (9)



Stochastic nonlinear cell population model for ovarian follicle activation 11

Note that the FL process is independent of the CL process. The jumping
times Tk of FL, for all k ∈ J0, f0 − 1K, are given by

Tk+1 := Tk + E (α1(f0 − k)) , (10)

with T0 = 0 by convention. Note that Tf0 = τf0L .

Proposition 2 (FLt and τf0L laws) Under Hypothesis 1 and for all t ≥ 0,
FLt |F0 = f0 follows a binomial law with parameters (n, p) = (f0, e

−α1t), and

the extinction time τf0L , defined by formula (9), follows a generalized Erlang
law (or hypo-exponential law) of density:

f
τ
f0
L

(t) = α1f0e
−α1t(1− e−α1t)f0−11[0,+∞[(t), (11)

such that E
[
τf0L

]
=

1

α1

f0∑
k=1

1

k
.

Proof Let t ≥ 0 and f ∈ J0, f0K. Since Ft is autonomous and is a pure death
process, we can directly write the following forward Kolmogorov equation: for
all f ∈ J0, f0K,

d

dt
P
[
FLt = f |F0 = f0

]
=

α1(f + 1)P
[
FLt = f + 1|F0 = f0

]
− α1fP

[
FLt = f |F0 = f0

]
. (12)

Solving by recurrence (12), we deduce that, for all f ∈ J0, f0K,

P
[
FLt = f |F0 = f0

]
=

(
f0
f

)
(e−α1t)f (1− e−α1t)f0−f .

Note that P [Ft = 0|F0 = f0] = (1− e−α1t)f0 which converges to 1 when t goes
to infinity. Hence, the process FL extincts almost surely (a.s.) when t goes

to infinity, hence τf0L < ∞. Before computing the law of τf0L , we can directly
obtain its mean using the recursive expression (10):

E
[
τf0L

]
=

f0−1∑
k=0

E [Tk+1 − Tk] =

f0−1∑
k=0

E [E (α1(f0 − k))] =
1

α1

f0∑
k=1

1

k
.

Then, using the same recursive expression (10), we deduce that τf0L (= Tf0)
follows a generalized Erlang law whose density function is:

f
τ
f0
L

(t) = 1t≥0

f0−1∑
i=0

f0−1∏
j 6=i,j=0

f0 − j
i− j α1(f0 − i)e−α1(f0−i)t. (13)
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Due to the specific form of the exponential rate in Eq. (13), we can simplify

it further. As

f0−1∏
j 6=i,j=0

(f0 − j) =
f0!

f0 − i
and

f0−1∏
j 6=i,j=0

(i− j) =

i−1∏
j=0

(i− j)×
f0−1∏
j=i+1

(i− j)

= i!(−1)f0−1−i
f0−1−i∏
j=1

j = (−1)f0−1−ii!(f0 − 1− i)!,

we deduce

f
τ
f0
L

(t) =α11t≥0

f0−1∑
i=0

f0!

i!(f0 − 1− i)! (−1)f0−1−ie−α1(f0−i)t

=α1f0e
−α1t1t≥0

f0−1∑
i=0

(
f0 − 1

i

)
(−e−α1t)f0−i−1

=α1f0e
−α1t(1− e−α1t)f0−11t≥0.

�
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f0
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t=0.0
t=0.1
t=0.69

t=2.71
t=5.05
t=10

0 2 4 6 8 10
Time (u.a.)

Fig. 3 Illustration of Proposition 2. Left-panel: Distribution of the random variable
FLt (binomial law) given the initial value F0 = 8. Each colored bar plot/line corresponds to
a different time (t=0,0.1,0.69,2.71,5.05, 10), see color code in the legend insert. Right-panel:
Extinction time of the precursor cells. The blue solid line is the cumulative distribution

function of the extinction time τf0L , while the blue dashed line is the probability density
function. The vertical red line indicates the mean extinction time value. The horizontal
black dashed line indicates the 95% confidence level. The colored points indicate the time
points corresponding to the legend insert. In both panels, α1 = 1.
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Figure 3 illustrates both the precursor cell distribution at different times
(left panel) and the extinction time distribution of precursor cells (right panel)
in the linear model (R1,R3,R4). Thanks to the analytical solutions, one can
easily compute a confidence interval for the extinction time. For instance, we
compute the time t = t0.95 for which extinction has occurred with probability
0.95,

P [Ft0.95 = 0|F0 = f0] = 1− e−α1f0t0.95 ≥ 0.95⇒ t0.95 ≥ −
ln(0.05)

α1f0
≈ 3

α1f0
.

We now study the mean number of proliferative cells at the extinction time.
We define the stochastic processes Ck,j , for (k, j) ∈ N×N, as independent and
identically distributed Yule processes. We recall that the Yule process can be
seen as the solution of

C0,0
t = 1 + Y

(
γ

∫ t

0

C0,0
s ds

)
,

where Y is a Poisson process.
Since the process CLt is linear, hence is a branching process, it can be written
as the sum of independent and identically distributed elementary processes
Ck,j (cell lineages, see Figure 4): for all t ≥ 0,

CLt =

F0∑
k=1

Ck,0
t−T 0

k
1t≥T 0

k

cell lineages generated by cell event R1

+

F0−1∑
k=0

Nk(t)∑
j=1

Ck,j
t−T jk

1t≥T jk

cell lineages generated by cell event R3

,

(14)
where we define, for all k ∈ J1, f0K,

– T 0
k := Tk (with Tk given by equation (10)), the k-th jumping time of the

cell event R1 of MFC .
– Nk(t), the number of occurrences of cell event R3 between Tk and Tk+1,

for t ≥ Tk. Note that

Nk(t) = Y3
(
α2

∫ t∧Tk+1

0

FLs ds

)
− Y3

(
α2

∫ Tk

0

FLs ds

)
. (15)

– for all j ∈ J1, Nk(t)K,

T jk := T j−1k + E (α2(f0 − k)) , (16)

the j-th jumping time of the cell event R3 occurring between the two
random times Tk and Tk+1.

According to Proposition 2, τf0L is a.s. finite. To take the expectation of CLt at

time t = τf0L , we check that E
[
Ck,j
τ
f0
L −T

j
k

]
< ∞, for all k and j. For all t ≥ 0,



14 Frédérique Clément et al.

Fig. 4 Jumping times and cell lineages. Each cell lineage represents schematically
the random process Ck,j , arising either from the cell event R1 (green trees) or R2 (red
trees), for the linear version of model MFC (submodel (R1,R3,R4)). For all k ∈ J0, f0K,
the random times Tk are defined by equation (10) and, for all j ∈ J1, Nk(t)K where Nk(t)

is given by equation (15), the random times T jk are defined by equation (16). The times of

the subsequent symmetric division events following the T jk and Tk times are represented at
arbitrary time points.

Ck,jt is L1−integrable (as a Yule process) with E
[
Ck,jt

]
= eγt. Note that

I :=

∫ +∞

0

eγtf
τ
f0
L

(t)dt = α1f0

∫ t

0

e(γ−α1)t(1− e−α1t)f0−1dt

= α1F0

f0−1∑
i=0

(
f0 − 1

i

)∫ +∞

0

e(γ−α1(i+1))tdt.

If Hypothesis 3 holds, I <∞ and, since Ck,j is a positive increasing process,
we deduce:

E
[
Ck,j
τ
f0
L −T

j
k

]
≤ E

[
Ck,j
τ
f0
L

]
= I <∞.

Then, taking the expectation of (14) at time t = τf0L , we obtain:

E
[
CL
τ
f0
L

]
=

f0∑
k=1

E
[
Ck,0
τ
f0
L −T 0

k

]
+

f0−1∑
k=0

E

Nk(τf0L )∑
j=1

Ck,j
τ
f0
L −T

j
k

 . (17)

In some cases, the latter formulas can be used to obtain the first moment of
CL
τ
f0
L

.

Proposition 3 (First moment of CL
τ
f0
L

)

1. Under Hypothesis 1, and supposing that γ is zero,

E
[
CL
τ
f0
L

]
= f0(1 +

α2

α1
).
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2. Under Hypotheses 1 and 3, and supposing that α2 is zero,

E
[
CL
τ
f0
L

]
= 1 + α1

f0−1∑
k=1

(f0 − k)

f0−k−1∑
i=0

(
f0 − k − 1

i

)
(−1)i+1

γ − α1(i+ 1)
.

Proof When γ is zero, then for all t ≥ 0, for all k ∈ J1, f0K and for all j ∈
J1, Nk(τf0L )K, Ck,jt = 1. We deduce directly from Eq. (17) that

E
[
CL
τ
f0
L

]
= f0 +

f0−1∑
k=0

E
[
Nk(τf0L )

]
. (18)

From Eq. (15), we have

E
[
Nk(τf0L )

]
= E

[
Y3
(
α2

∫ Tk+1

0

FLs ds

)
− Y3

(
α2

∫ Tk

0

FLs ds

)]

= E

[
Y3
(
α2

∫ Tk+1

Tk

FLs ds

)]
= E

[
α2

∫ Tk+1

Tk

FLs ds

]
,

by Poisson process property. Since for all t ∈ [Tk, Tk+1), FLt = f0 − k, we

deduce E
[
Nk(τf0L )

]
= E [α2(f0 − k)(Tk+1 − Tk)]. Using (10), we deduce that

E
[
Nk(τf0L )

]
= α2(f0−k)

α1(f0−k) = α2

α1
and conclude with (18).

When α2 is zero, Nk(t) is null for all t ≥ 0, hence we deduce directly from
(17) that

E
[
CL
τ
f0
L

]
=

f0∑
k=1

E
[
Ck,0
τ
f0
L −Tk

]
. (19)

Since Tf0 = τf0L , we have Cf0,0
τ
f0
L −Tf0

= 1. Let k ∈ J1, f0−1K. Since τf0L −Tk
(law)

=∑f0
i=k+1 E (α1(f0 − i+ 1))

(law)
=

∑f0−k
i=1 E (α1i), using Proposition 2, we deduce

that the density function of τf0L − Tk is

f
τ
f0
L −Tk

(t) = α1(f0 − k)e−α1t(1− e−α1t)f0−k−11t≥0.

Then, conditioning Ck,0
τ
f0
L −Tk

by the law of τf0L − Tk, we deduce first

E
[
Ck,0
τ
f0
L −Tk

]
=

∫ +∞

0

E
[
Ck,0t

]
f
τ
f0
L −Tk

(t)dt,
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then, since E
[
Ck,0t

]
= eγt,

E
[
Ck,0
τ
f0
L −Tk

]
= α1(f0 − k)

∫ +∞

0

e(γ−α1)t(1− e−α1t)f0−k−1dt

= α1(f0 − k)

f0−k−1∑
i=0

(
f0 − k − 1

i

)∫ +∞

0

(−1)ie(γ−α1(i+1))tdt

= α1(f0 − k)

f0−k−1∑
i=0

(
f0 − k − 1

i

)
(−1)i+1

γ − α1(i+ 1)
,

which ends the proof using (19).

�

The influence of each parameter on the mean number of proliferative cells at

the extinction time, E
[
CL
τ
f0
L

]
, for the linear model (R1,R3,R4), are illustrated

in Figure 5. We observe that CL
τ
f0
L

grows without bound as the symmetric

division rate γ approaches α1 (submodel (R1,R4)), while it grows linearly
as a function of the asymmetric division rate α2 (submodel (R1,R3)). Both
behaviors are consistent with the deterministic results (Figure 2).

Remark 2 In the case when both α2 > 0 and γ > 0, a simple analytical
formula cannot be obtained for the first moment of CL

τ
f0
L

since it is tricky to

deal with expectation in the second term of relation (14).

10
−2

10
−1

10
0

10
1

10
2

division rate (γ or α2)

10
1

10
2

10
3


[C

L τf
0 L
]

(1,3)
(1,4)

Fig. 5 Illustration of Proposition 3. Mean number of proliferative cells at the extinction

time, E
[
CL
τ
f0
L

]
for different parameter values. Orange line: E

[
CL
τ
f0
L

]
with respect to γ in

submodel (R1,R4) (α2 = 0). Blue line: E
[
CL
τ
f0
L

]
with respect to α2 in submodel (R1,R3)

(γ = 0). Green dashed line: both α2 and γ are zero, hence E
[
CL
τ
f0
L

]
= f0 = 8. In all cases,

α1 = 1.
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3.2.2 Upper bound of the stochastic model – Eq. (1)

In the general case, we cannot obtain analytical expressions for the extinction
time, and we will rather use numerical simulations. To control the numerical
error, we need a tractable upper bound of the stochastic model introduced in
Eq. (1), which is obtained in this subsection.

Let LsupF and LsupC be the following operators:

LsupF φ(f) = α1f [φ(f − 1)− φ(f)] ,

LsupC φ(c) = [(α1 + β1 + α2)f0 + γc] [φ(c+ 1)− φ(c)] .

for all φ bounded functions, for all f, c ∈ N.

F0

F

T ime

C

T ime

Fig. 6 Schematic trajectories of the coupled processes (F sup, Csup) and X = (F,C). Left
panel: number of precursor cells F (in green) and upper bound F sup (in blue). Right panel:
number of proliferative cells C (in green) and upper bound Csup (in blue).

Proposition 4 (Coupling) For the X process, there exist processes F sup

and Csup of generator LsupF and LsupC , respectively, such that for all t ∈ R+,
F supt ≥ Ft and Csupt ≥ Ct a.s.

Figure 6 illustrates (schematically) the upper bound (F sup, Csup) of the pro-
cess X = (F,C) solution of model MFC . This upper bound is obtained from
an appropriate coupling of both processes, which may or may not jump to-
gether, and which are such that when F sup = F (resp. Csup = C), the process
F sup (resp. Csup) jumps after (resp. before) the process F (resp. C), which
ensures keeping the order F sup ≥ F (resp. Csup ≥ C). The coupling is explicit
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in the proof of Proposition 4. We define F sup and Csup as the solutions of the
SDEs:

F supt = f0 − Y1
(
α1

∫ t

0

F sups ds

)
,

Csupt = Y1 (α1f0t) + Y2 (β1f0t) + Y3 (α2f0t) + Y4
(
γ

∫ t

0

Csups ds

)
, (20)

where the Poisson processes (Yi)i=1..4 are the same as those in Eq. (1). By
additivity of independent Poisson processes, we deduce that the infinitesimal
generator of F sup and Csup are LsupF and LsupC , respectively.

Remark 1 The Csup process is linear, as the CL process introduced in sub-
section 3.2.1. It turns out that the Csup process yields a much more tractable
analytical expression to control the mean number of proliferative cells at the
extinction time.

To prove the upper bound for the C process, we first start by a lemma.

Lemma 1 For i = 1, 2, 3, let (U ik)k≥0 be the sequences of jumping times as-
sociated with the counting processes

t 7→ Y1
(∫ t

0

α1Fsds

)
, t 7→ Y2

(∫ t

0

β1
FsCs
Fs + Cs

ds

)
,

and t 7→ Y3
(∫ t

0

α2Fsds

)
respectively, and, for i = 1, 2, 3, let (V ik )k≥0 be the sequences of jumping times
associated with the counting processes

t 7→ Y1 (α1f0t) , t 7→ Y2 (β1f0t) , and t 7→ Y3 (α2f0t)

respectively. We also define the process ZUt :=

3∑
i=1

∑
k≥1

1{Uik≤t} and the process

ZVt :=

3∑
i=1

∑
k≥1

1{V ik≤t}.

For all t ≥ 0,
ZUt ≤ ZVt , a.s. (21)

Proof (Proof of Lemma 1) By definition of a standard Poisson process, there
exists a sequence of jumping times (Sik)k≥0 for each i = 1, 2, 3 such that

Yi(t) =
∑
k≥1

1{Sik≤t}.

By definition of (Sik)k≥0 and (U ik)k≥0, for each i = 1, 2, 3 and for all k ≥ 0,
we have ∫ U1

k+1

U1
k

α1Fsds = S1
k+1 − S1

k, (22)
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∫ U2
k+1

U2
k

β1
FsCs
Fs + Cs

ds = S2
k+1 − S2

k, (23)

∫ U3
k+1

U3
k

α2Fsds = S3
k+1 − S3

k, (24)

Also, by definition of (Sik)k≥0 and (V ik )k≥0, for each i = 1, 2, 3 and for all
k ≥ 0, we have

V 1
k+1 − V 1

k =
S1
k+1 − S1

k

α1f0
, V 2

k+1 − V 2
k =

S2
k+1 − S2

k

β1f0

and V 3
k+1 − V 3

k =
S3
k+1 − S3

k

α2f0
. (25)

From (22)-(24), we obtain

S1
k+1 − S1

k ≤ α1f0(U1
k+1 − U1

k ), S2
k+1 − S2

k ≤ β1f0(U2
k+1 − U2

k )

and S3
k+1 − S3

k ≤ α2f0(U3
k+1 − U3

k ). (26)

Combining (25) and (26) , we conclude that for each i = 1, 2, 3

V ik+1 − V ik ≤ U ik+1 − U ik. (27)

We obtain that, for all t ≥ 0, ZUt ≤ ZVt a.s. , by counting process definition.

�

We can now proceed to the proof of Proposition 4.

Proof (Proof of Proposition 4) The C and Csup processes start from the same
state: C0 = Csup

0 = 0. By Poisson process definition and since C verifies Eq.
(1), we have

Ct = ZUt + Y4
(
γ

∫ t

0

Csds

)
. (28)

In the same way, since Csup verifies (20), we have

Csup
t = ZVt + Y4

(
γ

∫ t

0

Csup
s ds

)
. (29)

Let Q be the first time when the Csup and C processes are distinct:

Q := inf (t ≥ 0, Csup
t 6= Ct) ,

and, let RQ, be the first time when the Csup and C processes meet again:

RQ := inf (t ≥ Q,Csup
t = Ct) .

Note that at t = Q, Y4
(
γ
∫ t
0
Csds

)
= Y4

(
γ
∫ t
0
Csup
s ds

)
. Since C and Csup

have jumps of size one, between Q and RQ, one of the two processes stays
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necessarily over the other one. Using inequality (21) and equations (28) and
(29), we deduce that for all t ∈ (Q,RQ),

Csup
t > Ct.

Hence, for all t ∈ (Q,RQ),

Y4
(
γ

∫ t

0

Csup
s ds

)
≥ Y4

(
γ

∫ t

0

Csds

)
.

From this and from inequality (21), we deduce that for all t ∈ (0, RQ),

Csup
t ≥ Ct.

By strong Markov property, we conclude that the above inequality is valid for
all times t ∈ R+.
In the same way as in Eq. 9, we obtain the upper bound for the F process.
Using the same notation as above, we can write that

Ft = f0 −
∑
k≥1

1{U2
k≤t} − Y1

(
α1

∫ t

0

Fsds

)
.

Let QF be the first time when the F sup and F processes are distinct:

QF := inf (t ≥ 0, F sup
t 6= Ft) ,

and, let RFQF , be the first time when the F sup and F processes meet again:

RFQF := inf
(
t ≥ QF , F sup

t = Ft
)
.

Note that at t = QF , Y1
(
α1

∫ t
0
Fsds

)
= Y1

(
α1

∫ t
0
F sup
s ds

)
. Since F and F sup

have jumps of size one, between QF and RFQF , one of the two processes stays

necessarily over the other one. Hence, we deduce that for all t ∈ (0, RFQF ),

F sup
t ≥ Ft.

By strong Markov property, we conclude that the above inequality is valid for
all times t ∈ R+.

�

We now assess the first moment of the extinction time of the upper bound
process. In the same way, we define τsup as

τsup := inf {t, F supt = 0|F sup
0 = f0} .

Proposition 5 (First moment of Csup
τsup) Under Hypotheses 1 and 3, we

have:
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– if γ > 0:

E [Csupτsup ] =
(α1 + β1 + α2)f0

γ

[
α1f0

f0−1∑
k=0

(
f0 − 1

k

)
(−1)k+1 1

γ − α1(k + 1)
− 1

]
(30)

– if γ = 0:

E [Csupτsup ] =
α1 + β1 + α2

α1
f0

f0∑
i=1

1

i
. (31)

Proof Since τsup and Csup are independent, we deduce by conditioning with
respect to τsup that

E [Csupτsup ] =

∫ +∞

0

E [Csupt ] fτsup(t)dt, (32)

where fτsup is the density probability of τsup.
First, we suppose that γ > 0. Hence, Csup is a birth process with immigra-
tion and we use the classical result that Csupt follows a negative binomial law

BN
(
α1+β1+α2

γ f0, e
−γt
)

. In particular, for all t ≥ 0,

E [Csupt ] =
α1 + β1 + α2

γ
f0(eγt − 1). (33)

Since F sup is linear, we apply Proposition 2 and obtain

fτsup(t) = α1f0e
−α1t(1− e−α1t)f0−11[0,+∞)(t). (34)

Then, using (33) and (34), we deduce from (32) that

E [Csupτsup ] = α1
α1 + β1 + α2

γ
f20

∫ ∞
0

(eγt − 1)e−α1t(1− e−α1t)f0−1dt <∞

under Hypothesis 3. We have

α1f0

∫ ∞
0

e−α1t(1− e−α1t)f0−1dt =
[
(1− e−α1t)f0

]∞
0

= 1, (35)

and∫ ∞
0

e(γ−α1)t(1− e−α1t)f0−1dt =

f0−1∑
k=0

(
f0 − 1

k

)
(−1)k

∫ ∞
0

e(γ−α1(k+1))tdt

=

f0−1∑
k=0

(
f0 − 1

k

)
(−1)k+1 1

γ − α1(k + 1)
. (36)

From Eq. (35) and (36), we deduce relation (30).
If γ = 0, then Csup is a pure immigration process and follows a Poisson law
P ((α1 + β1 + α2)f0t) at time t ≥ 0. Using the same approach, we obtain that

E [Csup
τsup ] =

∫ +∞

0

(α1 + β1 + α2)f0tfτsup(t)dt = (α1 + β1 + α2)f0E [τ sup] .

We obtain Eq. (31) using Proposition 2.
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�

We immediately deduce the following corollary

Corollary 1 Under Hypothesis 1, we have E
[
τf0
]
< ∞. In addition, under

Hypothesis 3, we have E [Cτf0 ] <∞.

Proof Since, according to Proposition 4, for all t ≥ 0, F sup
t ≥ Ft, we first

deduce that, necessarily, τ sup ≥ τf0 . Then, since, according to Proposition 2,
E [τ sup] <∞, we can conclude that E

[
τf0
]
<∞.

In the same way, since Csup and C are both increasing processes, we obtain
from Proposition 4, that

Csup
τsup ≥ Cτsup ≥ Cτf0 .

Using Proposition 5, we conclude that E [Cτf0 ] <∞.

�

3.2.3 Numerical scheme for the mean extinction time and mean number of
proliferative cells at the extinction time

Let the domain D be defined as

D := J1, f0K× N. (37)

We can compute the moment of τf0 and Cf0τ using the martingale problem
(3). We introduce the following problem: find the value g(f0, 0) where g is
solution of

∀(f, c) ∈ D, Lg(f, c) = α and g(0, c) = g0(c), ∀c ∈ N (38)

where the g0 function and α scalar are to be chosen according to whether we
want to obtain E

[
τf0
]

or E [Cτf0 ].

1. For E
[
τf0
]
, we take, for all c ∈ N, g0(c) = 0 and α = −1.

2. For E [Cτf0 ], we take, for all c ∈ N, g0(c) = c and α = 0.

We detail formally why E
[
τf0
]

= g(f0, 0). Instantiating the martingale prob-
lem (3) at time t = τf0 and taking the expectation, we obtain:

E [g(Xτf0 )] = E [g(X0)]− E

[∫ τf0

0

Lg(Xs)ds

]
.

Note that, for all s ∈ (0, τf0), Xs ∈ D. Since α = −1, Lg = −1 for all
(f, c) ∈ S, and, since g(XτF0 = (0, Cτf0 )) = 0, we deduce that E

[
τf0
]

=
E [g(X0)] = g(f0, 0).
Actually, the martingale problem (3) is only valid for compactly supported
functions, which is not necessarily the case for g. Nevertheless, we are going to
show directly that the solution of system (38) on a truncated domain converges
to E

[
τf0
]
. The truncated problem is also motivated by numerical issues.

We can notice that system (38), which is similar to the Kolmogorov backward
equation, is unclosed, and there exists no analytical solution. We can obtain a
numerical estimate for the scalar g(f0, 0) using a domain truncation method,
as proposed in Munsky and Khammash (2006); Kuntz (2017).
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Domain truncation method We introduce the killed chain Z, similar to X on
D, whose transition matrix QZ := (qZ(x, y))x,y∈S coincides with Q on D:

qZ(x, y) = q(x, y),∀x ∈ D, y ∈ S, and qZ(x, y) = 0,∀x /∈ D, y ∈ S.

Lemma 2.4 of Kuntz (2017) ensures us that the chains X and Z are identical
up to the first exit time from domain D, i.e. at time t = τf0 .
In a second step, we introduce the truncated state space Sr (following Kuntz
(2017)), defined as: for all r ∈ N∗,

Sr := J0, f0K× J0, rK ∪ {(0, r + 1), (1, r + 1)}\ {(0, 0)} (39)

and the truncated domain Dr := Sr ∩ D.
We also construct the Markov chain Zr, similar to Z on domain Dr and killed
outside Dr. The chains Z and Zr are identical up to the first exit time from
domain Dr,

τf0r := inf (t such that Zrt /∈ Dr) = τf0 ∧ τSr ,
where τSr := inf (t such that Zrt /∈ Sr) . (40)

We include the state (0, r+1), (1, r+1) in domain Sr to ensure that τSr 6= τf0 .
In Figure 7 we draw the different domains D, Sr,Dr, and we sketch typical
trajectories of the X process and the auxiliary processes that we have defined
on each domain, namely Z and Zr. The Z (resp. Zr) process coincides with
X as long as X stays in domain D (resp. Dr) and is stopped when X leaves
domain D (resp. Dr).

Since Sr is a strictly increasing sequence of sets such that ∪rSr = S, τSr
goes to infinity a.s. when r goes to infinity. Since, according to Corollary 1,
τf0 < +∞, τf0r converges to τf0 a.s. when r goes to infinity. Using that C is
an increasing process, we also deduce the a.s. convergence of the sequence of
random variables C

τ
f0
r

to Cτf0 when r goes to infinity. We show in the next

proposition that the convergence holds in mean for both τf0r and C
τ
f0
r

.

Proposition 6 (Domain truncation relative error) Let p ∈ N∗, such that

E[(Cτf0 )p] <∞, and, let r ∈ R∗+ and εr :=
E[(C

τf0
)p]

rp . Then, we have

|E
[
τf0
]
− E

[
τf0r
]
|

E [τf0 ]
≤ εr and

|E
[
Cτf0

]
− E

[
Cτrf0

]
|

E
[
Cτf0

] ≤ εr.

Proof We combine the study of τf0r and C
τ
f0
r

by introducing h(τf0r ), where the

h function is either h(x) = x or h(x) = Cx. According to Corollary 1, we get
E
[
h(τf0r )

]
<∞ for both cases. As P

[
τSr = τf0

]
= 0, we can write that

P
[
τf0r = τf0

]
= 1− P

[
τf0r = τSr

]
. (41)
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D
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Dr

X/Z

X/Z/Zr

X

X/Z/Zr

X

X/Z/Zr

F0

Fig. 7 Domains and processes used in the finite state projection method, related
to Proposition 6. In shaded gray, we plot the infinite domain D defined in Eq. (37). The
solid blue line delimits the boundary of domain Sr, defined in Eq. (39). The red dashed line
delimits the boundary of domain Dr, corresponding to the intersection of D and Sr. The
blue, green and orange lines illustrate three typical trajectories of the processes X,Z,Zr.

Conditioning E
[
h(τf0r )

]
with respect to τf0r and using its definition (see (40)),

we deduce:

E
[
h(τf0r )

]
= E

[
h(τf0r )|τf0r = τf0

]
P
[
τf0r = τf0

]
+ E

[
h(τf0r )|τf0r = τSr

]
P
[
τf0r = τSr

]
= E

[
h(τf0)

]
P
[
τf0r = τf0

]
+ E [h(τSr )]P

[
τf0r = τSr

]
.

We have τf0 ≥ τf0r for all r ≥ 0. Hence, h(τf0) ≥ h(τf0r ) and we obtain:

|E
[
h(τf0)

]
−E

[
h(τf0r )

]
| = E

[
h(τf0)

]
(1−P

[
τf0r = τf0

]
)−E [h(τSr )]P

[
τf0r = τSr

]
.

From equation (41), we deduce first

|E
[
h(τf0)

]
− E

[
h(τf0r )

]
| =

(
E
[
h(τf0)

]
− E [h(τSr )]

)
P
[
τf0r = τSr

]
,

then
|E
[
h(τf0)

]
− E

[
h(τf0r )

]
|

E [h(τf0)]
≤ P

[
τf0r = τSr

]
.



Stochastic nonlinear cell population model for ovarian follicle activation 25

Note that P
[
τf0r = τSr

]
= P

[
C
τ
f0
r

= r
]

= P
[
C
τ
f0
r
≥ r
]
. Since C is increasing,

C
τ
f0
r
≤ Cτf0 , hence we obtain

P
[
τf0r = τSr

]
≤ P [Cτf0 ≥ r] .

Finally, Chebychev inequality give us that,

P
[
τf0r = τSr

]
≤ E[(Cτf0 )p]

rp
,

which ends the proof.

�

Pseudo-code According to Proposition 4, we first have that

CτF0
≤ Csup

τsup a.s. ,

then together with Proposition 6 for p = 1, we obtain

|E
[
τf0
]
− E

[
τf0r
]
|

E [τf0 ]
≤ A

r
and

|E
[
Cτf0

]
− E

[
Cτrf0

]
|

E
[
Cτf0

] ≤ A

r
,

where, if γ > 0,

A =
(α1 + α2 + β1)f0

γ

[
α1f0

f0−1∑
k=0

(
f0 − 1

k

)
(−1)k+1 1

γ − α1(k + 1)
− 1

]
(42)

or, if γ = 0,

A =
α1 + β1 + α2

α1
f20

f0−1∑
i=0

(
f0 − 1

i

)
(−1)i

(i+ 1)2
. (43)

We design the following algorithm to compute a numerical estimate of g(f0, 0):

Fix f0, g0, α, the parameter set θ = (α1, α2, β1, γ) and the tolerance
error ε;

Compute r = A
ε from equation (42) or equation (43) ;

Initialize gr(f, r) = 0 for all f ∈ J0, f0K;
for c from r − 1 to 0 do

gr(0, c)← g0(c) ;
for f from 1 to f0 do

gr(f, c)←
−α+(α1f+β1

fc
f+c )gr(f−1,c+1)+(γc+α2f)gr(f,c+1)

γc+(α1f+β1
fc
f+c )+α2f

;

end

end
Return gr(f0, 0);

Algorithm 1: Numerical estimate of g(f0, 0)

We apply Algorithm 1 to explore the influence of parameters on both the
mean extinction time of the precursor cells, E

[
τf0
]
, and the mean number of
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proliferative cells at that time, E [Cτf0 ] for the nonlinear model.
On the left panel of Figure 8, we can observe that E

[
τf0
]

decreases like a
logistic function with respect to β1 (in log scale), with a sharp transition for
β1 ≈ α1. When β1 tends to zero (β1 � α1 = 1), the mean extinction time

E
[
τf0
]

converges to E
[
τf0L

]
. On the contrary, when β1 is large (β1 � α1), the

mean extinction time E
[
τf0
]

converges to E [E ((α1 + α2)f0)] = 1
(α1+α2)f0

,

which corresponds to the mean time of the first event (in other words, when
β1 is large, cell event R2 becomes instantaneous). The various parameter con-
figurations shown in this panel lead to the conclusion that the parameter that
affects the most the mean extinction time E

[
τf0
]

is the auto-amplified tran-
sition rate β1, while the division rates α2 and γ have relatively less effect.
Moreover, it is clear from the analytical solutions of the linear model, that
the initial number of precursor cells f0 and the spontaneous transition rate α1

have a major impact on E
[
τf0
]
.

A logistic-shaped function is observed as well for E [Cτf0 ] (middle panel of Fig-
ure 8) when β1 is tuned (log scale), with a sharp transition around β1 ≈ α1.
When β1 is small, cells have time to divide before extinction (leading to a
higher level of E [Cτf0 ]) while when β1 is large, the main cell event is R2 and
few cells can divide before extinction, the limit value being f0 + α2

α1+α2
when

β1 →∞.
On the right panel of Figure 8, we plot the mean number of proliferative
cells at the extinction time as a function of the mean extinction time, when
β1 is tuned. These two quantities appear to be roughly linearly correlated,
with a slope that depends on the other parameter values. The inserted zoom
around (0, f0) shows that submodel (R1,R2,R3) can surprisingly lead to a
higher mean number of proliferative cells than submodel (R1,R2,R4) (with
unchanged α2 and γ values). This phenomenon arises for a large β1 value
(and small mean extinction time). In such a case, an asymmetric division in
submodel (R1,R2,R3) may arise before a spontaneous transition (with prob-
ability α2

α1+α2
), while a symmetric division in submodel (R1,R2,R4) can only

arise after a first spontaneous transition, yet is unlikely to occur for large β1
and fast extinction. However, for small feedback rate β1, the possibility of sym-
metric divisions leads to significantly more proliferative cells at the extinction
time, as expected.

4 Parameter calibration

In this section, we calibrate the model parameters using a likelihood approach.
We first describe the available experimental dataset, as well as in-silico datasets
that we use as a benchmark for our methodology. Then we derive a likelihood
function based on the embedded Markov chain from the underlying continuous-
time Markov process. We explain how this likelihood is specifically adapted to
the data, which are time-free measurements of cell numbers. Finally, we both
present the estimation results for each submodel derived from model (MFC)
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Fig. 8 Mean extinction time and mean number of proliferative cells at the extinction time.
Using Algorithm 1 with ε = 10−2, we compute the mean extinction time and the mean
number of proliferative cells at the extinction time. Left panel: mean extinction time as a
function of β1. Middle panel: mean number of proliferative cells at the extinction time as a
function of β1. Right panel: Mean number of proliferative cells as a function of the mean ex-
tinction time, when β1 varies. In each panel, we use four different parameter configurations
as follows. In all cases, f0 = 8 and α1 = 1. Black solid line: submodel (R1,R2,R3) with
α2 = 10. Blue solid line: submodel (R1,R2,R3) with α2 = 0.01. Green solid line: submodel
(R1,R2,R4) with γ = 0.01. Red dashed line: modelMFC with α2 = γ = 0.01. The orange
dotted horizontal lines represent the mean extinction time and number of proliferative cells
at the extinction time when β1 = 0 (applying formulas in Proposition 3 or, for submodel
(R1,R3,R4), simulating the stochastic process). The remaining colored dotted horizontal
lines correspond to the mean extinction time and number of proliferative cells at the ex-
tinction time when β1 → ∞. The legend insert on the top of the panels specifies the color
code. Dotted red: model (R1,R2,R3,R4); blue: model (R1,R2,R3) with α2 = 0.01; green:
model (R1,R2,R4); black: model (R1,R2,R3) with α2 = 10. For the mean extinction time,
the blue and red dotted lines are superimposed.

and carry out a comprehensive comparison between the different models. In
addition, we manage to retrieve hidden kinetic information and assess transit
times with given confidence intervals, thanks to a practical parameter identi-
fiability analysis as proposed in Raue et al. (2009).

4.1 Dataset description

Experimental dataset Follicles undergoing the activation process have been
classified according to three types Braw-Tal and Yossefi (1997); Gougeon and
Chainy (1987); Lundy et al. (1999); Meredith et al. (2000). Primordial folli-
cles (Type I or B) have either not yet or just initiated activation; they are
composed of a single layer of flattened cells surrounding the oocyte. Primary
follicles (Type II or C) have completed initiation; they only contain cuboidal
(transitioned) somatic cells organized in less than two layers (this means that
some follicles are strictly mono-layered, while in others an extra partially fulled
layer is being built-up). In between Types I and II lies a class of transitory
follicles (Type IA or B/C), with a mixture of flattened and cuboidal cells
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coexisting within a single layer. The progression from Type I to Type II is
accompanied with a more or less pronounced increase in the total cell num-
ber (flattened plus cuboidal cells) and enlargement in the oocyte (and follicle)
diameter (see bottom-right panel of Figure 9).
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Fig. 9 Description of the experimental dataset. Top-left, top-right and bottom-left
panels: experimental data points projected onto three different phase planes, respectively:
(F,C), (C, pc) and (N, pC), for both the Wild-Type (xWT ) and Mutant (xM ) subsets.
Red points: primary follicles, green points: transitory follicles, blue points: primary follicles.
Bottom-right panel: histological slices illustrating the different steps of activation (from left
to right: primordial, transitory and primary follicles). Experimental dataset: courtesy of Ken
McNatty; histological images: courtesy of Danielle Monniaux.

We have made use of a dataset acquired in sheep fetuses Lundy et al.
(1999); Wilson et al. (2001) (courtesy of Ken McNatty), which provides us
with precursor and proliferative cell numbers in a sample of follicles distributed
into the three activation steps. The dataset is subdivided into two subsets
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corresponding to two different sheep strains : the “wild-type” Romney strain
and the “mutant” Booroola strain. The latter is characterized by a natural
mutation affecting the receptor to growth factor BMP15 and resulting in the
alteration of follicle development (see the Introduction section).

We denote respectively by xWT and xM the Wild-Type and Mutant subsets
such that, for l ∈ B := {WT,M}:

xl = (xi)i∈J1,N lK ,

where N l is either 90 (Wild-Type) or 81 (Mutant), and each element xi is
a vector consisting of the number of precursor and proliferative cells. More
specifically, the measures consist of the cell numbers counted on the largest 2D
cross-section of histologically fixed follicles of type I, IB or II. This 2D number
can be correlated with the total 3D cell number from standard stereological
considerations Lundy et al. (1999). In order to deal with a final cell number
as close as possible to the number reached at the first time when all flattened
cells have transitioned to cuboidal cells (hence to the extinction time in the
model), we have only retained the strictly mono-layered type II follicles. Yet,
due to the oocyte enlargement and the resulting increased capacity of the first
layer, one cannot preclude that a significant amount of cuboidal cells have
been generated after the end of the transition period.

Figure 9 illustrates the repartition of the data points according to the
follicle type and sheep strain in each phase plane (C, F ) (C, pC), (N , pC).

In silico datasets In addition to the experimental dataset, we have constructed
in silico datasets generated from the simulation of five different submodels:
(R1,R3), (R1,R4), (R1,R2,R3), (R1,R2,R4) and (R1,R3,R4). We recall
that the different submodels are named by the reactions which have corre-
sponding positive reaction rates. All the submodels considered are thus nested
models, or reduced model compared to the full model (MFC). For each sub-
model, we select two parameter sets differing by contrasted values in the divi-
sion rates α2 or γ and/or transition rate β1. We obtain the corresponding 10
datasets by simulating 1, 000 trajectories from the SDE (1), with the Gillespie
algorithm Gillespie (1976), starting from the initial condition (F0, 0) at time
t = 0 up to the time when C(t) = 31 (the value C(t) = 31 corresponds to
the maximal number of cuboidal cells observed in the experimental dataset).
The initial random variable F0 follows a truncated Poisson law of parameter
µ (see Eq.(47)). For each trajectory, we select uniformly randomly one point
(f, c) among the state space points reached by the trajectory, so that each
in-silico datasets is composed of N = 1, 000 points. The parameter values are
summarized in Table 1.

We note

S := {((R1,R3), i), i = 1, 2}∪{((R1,R4), i), i = 1, 2}∪{(R1,R2,R3), i), i = 1, 2}
∪ {((R1,R2,R4), i), i = 1, 2} ∪ {((R1,R3,R4), i), i = 1, 2} (44)

the set of all the in silico datasets.
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α1 β1 α2 γ µ

(R1,R3)
Dataset x(R1,R3),1 1 0 0.7 0 5

Dataset x(R1,R3),2 1 0 0.007 0 5

(R1,R4)
Dataset x(R1,R4),1 1 0 0 0.7 5

Dataset x(R1,R4),2 1 0 0 0.007 5

(R1,R2,R3)
Dataset x(R1,R2,R3),1 1 0.01 0.07 0 5

Dataset x(R1,R2,R3),2 1 100 0.07 0 5

(R1,R3,R4)
Dataset x(R1,R3,R4),1 1 0 0.007 0.7 5

Dataset x(R1,R3,R4),2 1 0 0.007 0.07 5

(R1,R2,R4)
Dataset x(R1,R2,R4),1 1 0.01 0 0.07 5

Dataset x(R1,R2,R4),2 1 100 0 0.07 5

Table 1 Parameter sets used to generate the in silico datasets

In the sequel (see in particular Figure 11 and 12) these datasets will be used
as benchmark tools for the parameter identifiability study and the statistical
comparison between the submodels (and complete model). In any case, the
set of estimated parameters will match the set of cell events included in the
model used to generate the in silico dataset. For instance, we will estimate the
values of parameters α2 and γ on the two datasets generated from submodel
(R1,R3,R4).

4.2 Likelihood method

Since the experimental dataset is made of time-free observations, we are go-
ing to confront the model to the data using only the information on some
state space values taken by the process, without their corresponding time in-
formation. This notion is intrinsically related to the embedded Markov chain
which we detail below. We will use this Markov chain to compute a likeli-
hood function. Note that the proliferative cell population increases by one cell
at each event (R1, R2, R3 or R4), while the precursor cell population can
either remain constant (R3 or R4) or decrease by one (R1 or R2). The pro-
liferative cell population C can thus be used as an event counter. Indeed, as
a continuous-time Markov process, X (defined in Eq. 1) can be decomposed
into an embedded Markov chain (Fn, Cn)n∈N and a sequence of random time
jumps (τn)n∈N with

τn+1 = τn + E
(

(α1 + α2)Fn + β1
FnCn
Fn + Cn

+ γCn

)
, τ0 = 0.

Note that the sequence of time jumps (τn)n∈N corresponds exactly to the
sequence of time jumps associated with process C, and

C(t) =
∑
n∈N

1τn≤t , Cn = n .
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Thus, given that Cn = n is deterministic, it is clear that the precursor cell
population Fn (alone) is also a (non-homogeneous) Markov chain. To clarify
the link with the data, we will index the embedded chain Fn by the number of
proliferative cells c, rather than by the number of events that occurred: let Fc
be the random variable corresponding to the number of precursor cells given
that there are c ∈ N proliferative cells. According to the dichotomy between
the two division events (R3, R4) and the two transition events (R1, R2), we
deduce the law of Fc at the “pseudo-time” C = c from the law of Fc−1 at the
“pseudo-time” C = c− 1 as follows: for all (f, c) ∈ S,

P [Fc = f ] = qf+1,f (c− 1)P [Fc−1 = f + 1]

transition

+ qf,f (c− 1)P [Fc−1 = f ]

asymmetric/symmetric division

, (45)

where

qf+1,f (c) =
α1(f + 1) + β1

(f+1)c
f+1+c

(α2 + α1)(f + 1) + γc+ β1
(f+1)c
f+1+c

,

qf,f (c) =
α2f + γc

(α2 + α1)f + γc+ β1
fc
f+c

. (46)

Hence (Fc)c∈N is a non-homogeneous discrete time Markov chain. Notice that
the law of CτF0 , the number of proliferative cells at the extinction time of
the precursor cells, corresponds to the law of the first “pseudo-time” c such
that Fc = 0, e.g. CτF0 = inf{c ∈ N∗, Fc = 0}. Hence, one can use the same
estimates (Eq. (42) or Eq. (43)) used in the previous section to analyze the
law of CτF0 , or to reconstruct a numerical approximation of the mean of CτF0 .

In addition to Eq. (45), to compute the law of (Fc), we need to specify
an initial condition F0. We suppose that the initial number of precursor cells
follows a truncated Poisson law of parameter µ ∈ R+ defined as, for all f ∈ N∗,

P [F0 = f ] =
µf

(eµ − 1)f !
. (47)

Then, we can use Eq. (45) to compute P[Fc = f ] by recurrence from the initial
probability vector (P[F0 = i])i∈J0,c+fK. Hence, we have built a discrete time
Markov chain (Fc)c∈N from model (MFC) adapted to our time-free observa-
tions.

As can be seen from Eq. (46), the timescale cannot be inferred, so that we
fix arbitrarily α1 = 1, whatever the dataset, to obtain dimensionless parame-
ters. The time unit of the remaining parameters is thus relative to the timescale
of one spontaneous transition event. As far as the experimental and in silico
datasets, except α1, the estimated parameter values may depend on the spe-
cific dataset (experimental or in silico), which we highlight by the following
notations for the parameter sets: θl = (βl1, α

l
2, γ

l, µl) ∈ Θ ⊂ (R+)3 × [1,+∞),
l ∈ B ∪ S.
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Finally, we suppose that all data points are independent of one another,
and that the observations are free of measurement errors, and we ignore inter-
individual variability.

We obtain the following likelihood function for both the experimental and
in silico datasets: for l ∈ B ∪ S,

L(xl; θ) := P
[
xl|θ

]
=

N l∏
i=1

P [Fci = fi|θ] .

For each submodel m ∈ {(R1,R4), (R1,R3), ...} described in the previ-
ous section, the optimal parameter values are given by the maximum like-
lihood estimator θ̂lm (MLE), which we compute by minimizing the negative
log-likelihood, for l ∈ B ∪ S:

θ̂lm := arg min
θ∈Θm

(
− log

(
L(xl; θ)

))
,

where Θm is a subset of Θ constructed by fixing all the parameter sets re-
lated to the nonpresent events to the singletons {0}: for instance, in submodel
(R1,R4), we have Θ(R1,R4) = {0} × {0} × R+ × [1,+∞).
To compute the minimum, we use a derivative-free optimization algorithm: the
Differential Evolution (DE) algorithm Storn and Price (1997). In the following,
we describe the whole procedure for the complete model m = (R1,R2,R3,R4)
with the experimental dataset (l ∈ B). The algorithm starts from an initial
population in which each individual is represented by a set of real numbers
(β1, α2, γ, µ). Then, the population evolves along successive generations by mu-
tation and recombination processes. At each generation, the likelihood function
is used to assess the fitness of the individuals, and only the best individuals
are kept in the population. We have set the intrinsic optimization parame-
ters as follows: the initial population has a size of 20 individuals, and the
probability of mutation and crossing-over equals to 0.8 and 0.7 respectively.
The starting individual parameter sets are defined on a log scale, and drawn
from a uniform distribution on Θ = [−6, 6]3 × [0, 1.5]. The algorithm was run
over 1,000 iterations. To analyze the parameter identifiability, we follow the
practical approach based on the profile likelihood estimate (PLE), see for in-
stance Raue et al. (2009). Specifically, we compute the PLE around the MLE

θ̂lm =

(
β̂1
l

m, α̂2
l
m, γ̂

l
m, µ̂

l
m

)
for each ith component θ̂lm,i, i ∈ J1, 4K, as follows.

We design a grid Gi around the best parameter value θ̂lm,i with a fixed step
size (see Table 5 in Appendix 6.1 for details), and re-optimize the remaining
parameters using the DE algorithm with the same optimization parameters
(mut=0.8, crossp=0.7, popsize=20, its = 1,000) and initial parameter sets de-
fined on a log scale, and drawn from a uniform distribution on [−6, 6]3 for
parameters β1, α2 and γ, and on [−1 + log(µ̂lm), log(µ̂lm) + 1] for parameter µ.

For each parameter θ̂lm,i, we obtain a MLE vector θ̂lm|[θlm,i = x], with x ∈ Gi:

θ̂lm|[θlm,i = x] := arg min
θ∈Θm,θlm,i=x

(
− log

(
L(xl; θ)

))
,
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and its associated PLE (vector) L(xl; θ̂lm|θlm,i).
Finally, the pointwise likelihood-based confidence intervals are constructed
thanks to the likelihood ratio test, following Raue et al. (2009) ; for each

estimated parameter θ̂lm,i, we select all the parameters θlm,i = x such that:

L(x; θ|[θlm,i = x])− L(x; θ̂lm) < 0.5 ∗∆α,

where ∆0.95 = χ2(0.95, 1) = 3.84 is the 0.95-quantile of the χ2 law with 1
degree of freedom.

4.3 Fitting results

In this subsection, we calibrate the model parameters for several submodels
derived from model (MFC):

– two-event submodels, including the spontaneous transition event together
with either the asymmetric (R1,R3) or symmetric division (R1,R4);

– three-event submodels, including both the spontaneous and auto-ampli-
fied transition events, together with either the asymmetric (R1,R2,R3) or
symmetric (R1,R2,R4) division event;

– the full model (R1,R2,R4,R4)

In all cases the parameter ruling the initial condition, µ, is estimated.
We follow the procedure described in subsection 4.2 to fit the parameters

on the experimental subsets xWT and xM and in-silico datasets introduced in
subsection 4.1.

4.3.1 Two-event submodels

The fitting results for submodels (R1,R3) and (R1,R4) are shown in Figure
10. For both the Wild-Type and Mutant subsets, a visual inspection shows that
submodel (R1,R4) leads to a “direct” transition, followed by prolonged cell
proliferation after precursor cell extinction, while with submodel (R1,R3),
there is a higher probability that the total number of cells increases before
precursor cell extinction. This observation is consistent with the fitting results
of the in-silico datasets.

In Figure 11, we show the PLE for each estimated parameter. Both the
initial condition parameter µ (orange solid lines) and asymmetric division rate
α2 (green solid line) are practically identifiable (in the sense given in Raue
et al. (2009)), while parameter γ (blue solid line) is only partially practically
identifiable in most cases. From the in silico dataset analyses, we observe
that both parameters α2 (R3) and γ (R4) are practically identifiable and
close to their expected values (less than one log10 of difference) when the
parameters are of the same order of magnitude than α1 (Datasets x(R1,R3),1

and x(R1,R4),1). In contrast, a small parameter value compared to α1 leads
to a biased parameter estimate, with a huge shift between the estimated and
true parameter values (roughly a two log10 difference).
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Fig. 10 Two-event submodels: Best fit trajectories. Using Formula 45, we compute
each probability P [Fc = f ] for submodel (R1,R4) with the MLE parameter set θ̂lm, l ∈
{WT,M, ((R1,R4), 1)} (left panels), and submodel (R1,R3) with the MLE parameter set

θ̂lm, l ∈ {WT,M, ((R1,R3), 1)} (right panels). Each dark gray square corresponds to a data
point in the datasets xl, l ∈ {WT,M, ((R1,R4), 1) , ((R1,R3), 1)}.

4.3.2 Three-event submodels and complete model

We turn now to the analysis of three-event submodels (R1,R2,R3), (R1,R2,R4)
and (R1,R3,R4)) and the complete model ((R1,R2,R3,R4). Qualitatively,
the fitting results for submodel (R1,R2,R3) are similar to those for submodel
(R1,R3) (data not-shown); they are characterized by a high probability to
produce ten or more proliferative cells before the precursor cell extinction.
The fitting results for submodels (R1,R2,R4) and (R1,R3,R4), as well as for
the complete model are rather similar to submodel (R1,R4); they are charac-
terized by direct cell transition with very little concomitant cell proliferation,
followed by prolonged cell proliferation after precursor cell extinction. The fit-
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Fig. 11 Two-event submodels: PLE. Each panel represents the PLE, in log10 scale,
obtained from the experimental (top panels) and in silico datasets (bottom panels), and
either submodel (R1,R4) (left panels) or (R1,R3) (right panels). The dashed black line
represents the 95%-statistical threshold, while each point represents the optimum value of
the likelihood. Orange solid lines: PLE values L(xl; θ̂lm|µ); blue solid lines: PLE values

L(xl; θ̂l
(R1,R4)

|γ); green solid line: PLE values L(xl; θ̂l
(R1,R3)

|α2). The colored points are

the associated MLE θ̂lm. In the bottom panels, the star symbols are the expected (true)
parameter values (see Table 1).

ting results for the complete model are shown in the top panel of Figure 13 for
both the Wild-type and Mutant subsets. We notice that in the Mutant case,
there is a tendency to produce more proliferative cells.

The PLEs for each dataset and each parameter are presented in Figure 12
for the three-event submodels and Figure 13 for the complete model. The cor-
responding parameter values and confidence intervals for the Wild-Type and
Mutant subsets are given in Tables 3 and 4 in the Appendix. As observed for
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Fig. 12 Three-event submodels: PLE. Each panel represents the PLE, in log10
scale, obtained from the experimental (top panels) and in silico datasets (bottom pan-
els), and either submodel (R1,R2,R4) (left panels), (R1,R2,R3) (center panels), or
(R1,R3),R4) (right panels).The dashed black line represents the 95%-statistical thresh-
old, while each point represents the optimum value of the likelihood. Orange solid lines:
PLE values L(xl; θ̂lm|µ); blue solid lines: PLE values L(xl; θ̂lm|γ); green solid lines: PLE

values L(xl; θ̂lm|α2); red solid lines: PLE values L(xl; θ̂lm|β1). The colored points are the as-

sociated MLE θ̂lm. In the bottom panels, the star symbols are the expected (true) parameter
values (see Table 1).

the two-event submodels, in each case, the initial condition parameter µ (or-
ange solid lines) is always practically identifiable, and its fitted value is close
to the true one for the in silico datasets. In contrast, all other parameters have
a lack of identifiability. Specifically, the asymmetric division rate α2 is practi-
cally not identifiable for submodel (R1,R2,R3) with the experimental subsets,
while it is identifiable with the in-silico datasets (although the estimated values
are slightly biased), which indicates that more data can indeed help to improve
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parameter identifiability. Interestingly, when the asymmetric division event is
combined with the symmetric division event (submodel (R1,R3,R4)) rather
than with the auto-amplified transition (submodel (R1,R2,R3)), the asym-
metric division rate γ becomes identifiable in the experimental subsets, which
reveals complex parameter dependencies between the asymmetric division rate
α2 and auto-amplified transition rate β1. In the complete model, only a very
broad confidence interval (3-5 logs) can be obtained for α2. In most cases, a
finite confidence interval for the symmetric division rate γ cannot be inferred
from the experimental data, we can just get an upper-bound. The fitting results
obtained with the models including event R4 suggest a possible explanation:
since the transition and proliferation events are rather uncoupled, and occur
sequentially (first transition, then proliferation), the proliferation rate can just
be constrained to be small enough so that proliferation does almost not take
place before cell precursor extinction. After precursor cell extinction, the only
possible remaining event is the symmetric division event R4, whose timescale
cannot be constrained by the time-free data. This explanation is confirmed by
the dependencies of β1 on γ for submodel (R1,R2,R4), shown in Figure 17

in the Appendix. The optimum value (̂β1)
l

m|γ, computed from the PLE of γ
(minimizing the likelihood with γ fixed, see the blue lines in the top panels of
Figure 12 and bottom panels of Figure 13), increases linearly with γ as soon as
the symmetric division rate gets upper than 1 (hence greater than α1). Finally,
the self-amplified transition rate β1 is not-identifiable in most cases, and even
not constrained by any upper-bound for the experimental subsets. We note
that in the complete model, the self-amplified transition rate β1 is constrained
to be greater than ≈ 100.66 in the Wild-type case, while it is unconstrained in
the Mutant case (with a slightly higher probability around 100.44).

4.3.3 Comparison of models

We now perform the comparison between the different submodels with either
two or three cell events and the complete model (MFC).

The AIC and BIC analyses performed to compare the submodels are sum-
marized in Table 2. The AIC and BIC criteria suggest that the best model
associated with the Wild-Type subset is the complete model, while the best
model associated with the Mutant subset is the three-event linear submodel
(R1,R3,R4).

The reader can refer to Burnham and Anderson (2003) (Chapter 6) for
a detailed presentation of the rule of thumb, classically used to analyze the
∆AIC
i := AICi −AICmin and ∆BIC

i = BICi −BICmin values, where i is the
index of the ith model. For the Wild-Type subset, both ∆AIC and ∆BIC
suggest that a suitable alternative (2 < ∆ < 7) to the complete model are
models (R1,R4), and (R1,R3,R4), while model (R1,R2,R4) is less rele-
vant (7 < ∆ < 9) and the remaining models (R1,R3), (R1,R2,R3) can be
safely ruled out (∆ > 10). For the Mutant subset, the complete model is al-
most as probable (∆AIC < 2) as the best model (R1,R3,R4), while models
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Fig. 13 Complete model: Best fit trajectories and PLE. Top panels: using Formula
(45), we compute each probability P [Fc = f ] for the complete model with the MLE θ̂lm,
l ∈ B presented in Tables 3 and 4 (left panel: Wild-Type; right panel: Mutant). Each dark
gray square corresponds to one data point in the experimental subsets xl, l ∈ B. Middle
and bottom panels: each panel represents the PLE, in log10 scale, obtained from the two
experimental subsets (middle panel: Wild-Type; bottom panel: Mutant) and for parameters
β1, α2, γ, µ (see the legend of Figure 12). The dashed black line represents the 95%-statistical
threshold, while each colored filled circle represents the optimum value of the likelihood.

(R1,R4) and (R1,R2,R4) are less relevant (6 < ∆ < 9) and models (R1,R3),
(R1,R2,R3) can be safely ruled out as well (∆ > 10). These results are con-
firmed by the AIC and BIC weight analyzes. For each dataset and criterion
(AIC or BIC), we order the AIC/BIC weights from the highest to the lowest
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values and sum them up. We retain as acceptable all the models such that
the sum is upper than the p-value 0.95. The AIC-based selection retains the
linear (R1,R3,R4) and complete models for both the Wild-Type and Mutant
subsets (in both cases, p-value = 0.97), whereas the BIC-based selection re-
tains the two linear models (R1,R4) and (R1,R3,R4) and the complete model
(WT p-value = 0.97, M p-value = 0.96).

Both rejected submodels (R1,R3), (R1,R2,R3) have indeed a negative
log-likelihood far away from the other models, which all includes event R4.
The visual inspection of Figure 10 leads to the following explanation. If event
R4 is present, as in submodel (R1,R4), the proliferative cells can keep dividing
after the extinction of the precursor cells (line f = 0). Once the precursor cell
number reaches zero for a given c, all remaining points (0, c′) for c′ ≥ c are
reached with probability one, which results in a comparatively low contribution
of all (0, c) data points to the negative log-likelihood. In contrast, if event R4

is not present, as in submodel (R1,R3), the process stops as soon as the
precursor cell population F gets extinct, which prevents the likelihood of all
(0, c′) points from being close to one (they rather take all intermediate values).

Wild-Type Mutant
Model -logL(θ; x) AIC BIC -logL(θ; x) AIC BIC

(R1,R4) 172.87

349.74
w = 0.02

∆ = 7.6

354.74
w = 0.15

∆ = 3.0 149.97

303.94
w = 0.08

∆ = 8.8

308.73
w = 0.03

∆ = 6.4

(R1,R3) 245.54

495.09
w < 10−10

∆ >> 10

500.09
w < 10−10

∆ >> 10 230.17

464.34
w < 10−10

∆ >> 10

469.13
w < 10−10

∆ >> 10

(R1,R2,R4) 172.77

351.54
w = 0.008

∆ = 9.44

359.04
w < 10−10

∆ = 7.4 148.14

302.27
w = 0.02

∆ = 7.1

309.46
w = 0.02

∆ = 7.1

(R1,R2,R3) 242.51

491.02
w < 10−10

∆ >> 10

498.52
w < 10−10

∆ >> 10 229.44

464.89
w < 10−10

∆ >> 10

472.07
w < 10−10

∆ >> 10

(R1,R3,R4) 170.58

347.16
w = 0.07

∆ = 5.0

354.66
w = 0.15

∆ = 3.0 144.58
295.15
w = 0.64

302.34
w = 0.81

(Ri)i∈J1,4K 167.05
342.10
w = 0.90

351.68
w = 0.68 144.24

296.48
w = 0.33

∆ = 1.3

306.06
w = 0.12

∆ = 3.7

Table 2 Model comparison analysis. For each experimental subset and each submodel,
we compute both the Akaike information criterion (AIC) and Bayesian information criterion
(BIC), the AIC and BIC differences ∆AICi := AICi−AICmin and ∆BICi = BICi−BICmin,

and the corresponding Akaike and Bayesian weights wAICi =
exp(−0.5∆AICi )∑6
k=1

exp(−0.5∆AIC
k

)
and

wBICi =
exp(−0.5∆BICi )∑6
k=1

exp(−0.5∆BIC
k

)
following the formulas provided in Burnham and Anderson

(2003) (Chapter 2 and 3).
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4.4 Model prediction

In this subsection, we use the fitted parameter sets θ̂lm and the parameter

values θ̂lm|θ̂lm,i, for which the PLE is below the 95% threshold of the best
models (the two linear submodels (R1,R4) and (R1,R3,R4) and the complete
model) to infer information on the experimental subsets.

4.4.1 Distribution of the initial condition

In the previous section, we have observed that the initial condition parameter µ
is the unique parameter to be practically identifiable in all cases, and that it is
fitted to similar values from one submodel to another (see Table 2). Parameter
µ can be either estimated from the whole experimental subsets, as the other
parameters, or, alternatively, from the cell number of the primordial follicles
only. For all l ∈ B, let xlini be the subset composed of the sole primordial
follicles:

xlini := {(fi, ci) ∈ xl such that ci = 0, i ∈ J1, N lK}.
We recall here that F0 is assumed to follow a truncated Poisson law of param-
eter µ (see Eq. (47)). We use again a classical maximum likelihood approach,
associated with the experimental dataset xlini. From the likelihood function

Lini(xlini;µ) :=
∏

i∈J1,N lK:ci=0

µfi

(eµ − 1)fi!
,

we deduce the MLE µ̂lini, for all l ∈ B,

µ̂lini := arg min
µ≥1

(
− log

(
Lini(xlini;µ)

))
.

The law F0 with parameter µ̂lini is thus inferred solely from the primordial
follicle data, while the law F0 with parameter µ̂l is inferred using also the
transitory and primary follicle data.
In Figure 14, we compare for each subset WT or M the distributions derived
from model (R1,R4), (R1,R3,R4) and (R1,R2,R3,R4), using either only the
primordial follicle data or the complete follicle data. From the top panels of
Figure 14, we observe that in all cases, there is an overestimation of the part
of the distribution corresponding to P [F0 ≤ 5], which suggests that the model
for the initial condition should be a more truncated Poisson distribution for
the low values of F0. As expected, using more information leads to narrowing
down the uncertainties, hence the confidence intervals are smaller when the
whole data are used (for all models and subsets considered). More surprisingly,
we observe a shift of approximately one cell in average, in opposite directions
for the Wild-Type and Mutant subset: for the Wild-Type subset, the mean
cell number is found to be greater when the whole data are used, while for
the Mutant subset, the mean cell number is found to be smaller (for all three
models considered). In details, the confidence intervals for the Mutant subset
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using the whole data superimposes totally or partially to the confidence inter-
vals using only the primordial follicle data, with an overlap of 100% for model
(R1,R4), 65% for model (R1,R2,R3,R4), and 50% for model (R1,R3,R4).
In the Wild-Type subset, the confidence intervals are more disjoint, with an
overlap of 64% for model (R1,R2,R3,R4), 25% for model (R1,R3,R4), and
no overlap at all for model (R1,R4).
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Fig. 14 Initial condition. Top and middle panels: experimental data histograms of the
number of precursor cells in primordial follicles with inferred Poisson distributions. His-
tograms with coral-colored bars: initial precursor cell number in primordial follicles for
Wild-Type xWT

ini (top panels) and Mutant xMini (middle panels) subsets. For subsets l ∈ B
and submodels (R1,R4) (left panels), (R1,R3,R4) (center panels) and (R1,R2,R3,R4)
(right panels), we plot: in white dashed lines, the truncated Poisson distribution (47) with
MLE µ̂lm; in colored solid lines: the truncated Poisson distribution (47) with µ in the confi-
dence interval of µ̂lm; in black dashed lines: the truncated Poisson distribution (47) with MLE
µ̂lini; in gray solid lines, the truncated Poisson distribution (47) with µ in the confidence

interval of µ̂lini (parameter values: µ̂WT
ini = 6.22 ∈ [5.54; 6.67], µ̂Mini = 6.77 ∈ [5.75; 7.60]).

Bottom panels: negative log-likelihood function Lini(xlini;µ) and confidence intervals of

µ̂lini and µ̂lm (left panel: Wild-Type, right panel: Mutant). Cyan dashed lines: log-likelihood

function Lini(xlini;µ); red dashed lines: 95% confidence interval; colored solid lines (resp.

filled circles): confidence intervals of µ̂lm (resp. µ̂lm values) for each submodel.
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4.4.2 Proliferative cell proportion: reconstruction of time

In Figure 15, we represent the predicted change in the proliferative cell propor-
tion with respect to time. These predictions are derived from the deterministic
formula Eq. (7) for each model, using the parameter values obtained from the
identifiability analysis, for which the PLE is below the 95% threshold. In both
the Wild-Type and Mutant cases, despite the uncertainty affecting the model
parameters for the two linear submodels (left and right upper panels), the
dynamics just exhibit small uncertainties: the proportion of proliferative cells
reaches 50%-70% in one time unit, which corresponds to the time unit of a
single spontaneous transition event. This might due partly to the fact that
parameter γ is partially identifiable and is estimated to relatively low values.
In contrast, the lack of parameter identifiability of the complete model results
in a huge uncertainty on the dynamics, that can be up to 5 order of magnitude
faster than a single spontaneous transition event: the proportion of prolifer-
ative cells reaches 50% between 10−6 and 1 time unit. Indeed, cell event R2

(controlled by parameter β1) can speed up the transition dynamics, and cell
event R3 (controlled by parameter α2) can trigger the transition, leading to a
possible fast activation which avoids the bottleneck of the spontaneous transi-
tion timescale (α1 = 1). No clear timescale separation between the Wild-type
and Mutant dynamics can be revealed, although some parameter combina-
tions are compatible with a faster transition in the Wild-Type case than in
the Mutant case.

4.4.3 Mean extinction time, mean number of cells at the extinction time and
mean number of division events before extinction

In Figure 16, we represent the mean number of proliferative cells, E [CτF0 ], as a
function of the extinction time E

[
τF0
]
, and the mean number of division events

before extinction, E [CτF0 − F0], as predicted from the selected (sub)models
(R1,R4), (R1,R3,R4) and (R1,R2,R3,R4). These predictions are obtained
from a direct stochastic simulation of the trajectories of each model (with
Gillespie algorithm, or SSA)1, using the parameter values obtained from the
identifiability analysis, for which the PLE is below the 95% threshold. For each
subset (Wild-Type or Mutant), the predicted mean number of proliferative
cells at the extinction time is similar in each submodels and lies between 8
and 10 cells. Interestingly, the predicted mean number of proliferative cells at
the extinction time is approximately 6-8 cells lower than the empirical mean
number of proliferative cells obtained directly from the primary follicle data set
{xl , such that f = 0} (Figure 16, top panels). This observation is consistent
with the trajectory analysis performed from Figure 10 for submodel (R1,R4)

1 We use here the direct simulation rather than Algorithm 1, because the parameter range
explored by the symmetric division rate γ in the PLE exceeds the bound γ < α1 required
by Algorithm 1. A finer upper-bound of the proliferative cell population in the nonlinear
process (taking into account event R2 for instance) would be required to use a finite state
projection method when γ > α1 .
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Fig. 15 Dynamics of the proportion of proliferative cells. For submodel (R1,R4)
(top left panels), (R1,R3,R4) (top right panels) and whole model (R1,R2,R3,R4) :
(R1,R3) (bottom panels), we plot the deterministic proportion of proliferative cells pC(t)
computed from Eq. (7) with the fitted parameters lying in the MLE confidence interval

θ̂lm associated with each profile likelihood (see subsection 4.2 for details). Blue lines: pC(t)

with parameters θ̂lm|γ; yellow lines: pC(t) with parameters θ̂lm|µ; green lines: pC(t) with

parameters θ̂lm|α2; red lines: pC(t) with parameters θ̂lm|β1.

and Figure 13 for the complete model, from which we have concluded that
the activation process follows with high probability a trajectory reaching state
f = 0 with a low cell number, and characterized by direct transition and very
little concomitant cell proliferation.

Similarly, the mean number of division events before the extinction time is
approximately 5-7 cells lower than the increase in the mean empirical number
of cells between the primordial follicle datasets and primary follicle datasets
(Figure 16, bottom panels). The mean extinction time of the two linear sub-
models (R1,R4) and (R1,R3,R4) depends only on the initial condition and
is estimated to a value around 2.5 a.u. with a small uncertainty, similarly as
in Figure 15. In contrast, the complete model yields a larger uncertainty on
the mean extinction time, with a confidence interval between 10−6 and 0.5
a.u. for the Wild-Type subset, and between 10−6 and 2.5 a.u. for the Mutant
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subset, consistently with the prediction on the dynamics of the proliferative
cell proportion (Figure 15).
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Fig. 16 Prediction of the mean number of proliferative cells and mean num-
ber of division events before extinction. We plot the mean number of proliferative

cells at the extinction time E
[
CF0
τ

]
(top panels), and the mean number of division events

before extinction E
[
CF0
τ − F0

]
(bottom panels) as a function of the mean extinction time

E
[
τF0

]
(left panels: Wild-Type; right panels: Mutant). For each parameter lying in the

MLE confidence intervalθ̂lm, we simulate 10,000 trajectories with the Gillespie algorithm,

up to the extinction event {F = 0}, and compute E
[
τF0

]
, E
[
CF0
τ

]
and E

[
CF0
τ − F0

]
from

standard empirical mean estimates. Colored solid lines: E
[
CF0
τ

]
, E
[
CF0
τ − F0

]
as a function

of E
[
τF0

]
for parameters θ̂lm|p and p ∈ {β1, α2, γ, µ} associated with each profile likelihood

(see subsection 4.2 for details); filled circles: θ̂lm, for submodels {(R1,R4), (R1,R3,R4),
and complete model (R1,R2,R3,R4)}. Dotted black lines: standard empirical mean esti-
mate of proliferative cell numbers (top panels) and division events (bottom panels) before
extinction in the primary follicles (data set {xl , such that f = 0}).

4.4.4 Biological interpretation

From the primordial follicle data, we have found that the mean initial number
of precursor cells µ̂WT

ini for the Wild-Type subset is about the same as µ̂Mini
for the Mutant. Moreover, the prediction on the total number of proliferative
cells at the end of the activation phase, E

[
CF0
τ

]
, is also very similar in the

Wild-Type and Mutant cases. The observed shift in opposite directions for
the mean initial cell number inferred from the MLE of the dynamical models
(µ̂WT
m ≈ µ̂WT

ini +1 and µ̂Mm ≈ µ̂Mini−1) is thus compensated for by the differences
in cell dynamics. The number of divisions during the transition is smaller in
the Wild-Type than in the Mutant subset (E[Cτ − F0] ≈ 2 in Wild-Type,
E[Cτ −F0] ≈ 4 in Mutant), as a result of a global difference between the MLE
parameters: the order of magnitude of the division rates are closer to that of the
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transition rates in the Mutant compared to the Wild-Type subset. In overall,
we conclude from our extensive datafitting analysis that the Wild-Type subset
exhibits a clearer separation of dynamics during follicle activation (first cell
transition, then cell proliferation), while in the Mutant cell proliferation could
occur at a substantial rate before precursor cell extinction. We note that this
conclusion has to be tempered by the sparse character of our experimental
dataset. In particular, a detailed examination of the experimental data reveals
that the four data points available for transitory follicles in the Wild-Type
subset correspond to a clearly higher number of precursor cells than any of
the primordial follicles, which certainly impacts our results. In contrast, the
Mutant subset contains transitory follicles with significantly fewer precursor
cells than the primary follicles.

Finally, we highlight that the β1-free linear submodel (R1,R3,R4) per-
forms as well as, and even better than the complete model (MFC) (Ri)i∈J1,4K
in Mutant compared to Wild-Type ewes, which is compatible with the func-
tional hypotheses applicable to the BMP15R mutation. Indeed, one could spec-
ulate that the diminished BMP15 signaling would hamper the molecular dialog
between the oocyte and somatic cells after follicle activation triggering, so that
the auto-amplified cell event would barely occur in the Mutant group.

5 Conclusion

In this work, we have introduced a stochastic nonlinear cell population model
to study the sequence of events occurring just after the initiation of follicle
growth. We have characterized the dynamics of precursor and proliferative cell
populations according to the parameter values, for both the stochastic model
and its deterministic mean-field counterpart. We have studied in details the
extinction time of the precursor cell population, and designed an algorithm
to compute numerically both the mean extinction time and mean number of
proliferative cells at the extinction time. The algorithm is based on a domain
truncation similar to the Finite State Projection (FSP) method proposed in
Munsky and Khammash (2006); Kuntz (2017). The FSP approach aims to ap-
proximate the law of the process at a given time by solving a truncated version
of the Kolmogorov forward system. We have adapted the FSP algorithm to
solve the infinite recurrence relation satisfied by the extinction time moments.
We have found a consistent spatial boundary to solve the closure problem,
thanks to a coupling technique and tractable upper-bound process. The nu-
merical cost of the algorithm is deeply related to the proper choice of the
upper-bound processes. As we have noticed in section 4, a finer approximation
would be required to compute the mean extinction time and mean number of
proliferative cells at the extinction time using the FSP method when dealing
with a broader range of parameters (and in particular the case α1 < γ < β1).

This algorithm has nevertheless allowed us to investigate the parameter
influence on the precursor cell extinction time and number of proliferative
cells at the end of the follicle activation phase. The auto-amplified transition
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rate β1 exerts a critical control on the mean extinction time, with a sharp
timescale reduction when β1 exceeds the spontaneous cell transition α1, while
the division rates (α2, γ) have relatively less effect. The effect of the auto-
amplification process is probably dependent on the specific parameterization
of the cell event rates chosen in this work, yet our findings bring interesting
insight into the mechanisms underlying follicle activation; nonlinear feedbacks
mediated through cell-to-cell communication certainly play a role, and our
estimation results have shown that any impairment of this feedback would
change drastically the kinetics of follicle activation.

Moreover, our results can be useful to understand the variability in the
cell numbers among ovarian follicles at the end of the activation phase, which
can be used as initial conditions for models describing the following stages of
follicle development Clément et al. (2013, 2019).

We have performed the parameter calibration in a special context of time-
free data. It turns out that the proliferative cell dynamics can be seen as
a clock for the whole process, and that the embedded Markov chain is bet-
ter adapted to the time-free data than the continuous-time model. We have
used the embedded Markov chain to define a proper likelihood function and
a statistically rigorous framework. The likelihood function has allowed us to
perform an extensive data fitting analysis, using the very useful concept of
profile likelihood estimate. This analysis sheds light onto several aspects of
the activation of ovarian follicles. First, the transition scenario, where cell pro-
liferation is mostly posterior to cell transition, and the cell number increase
is moderate, seems to be predominant versus a more proliferative scenario.
While the question is still open, it seems likely that cell transition is favored
in the Wild-Type strain compared to the Booroola mutant strain. With the
available experimental dataset, we have yet not managed to make a clear
distinction between, on one side, a progressive transition with a steady net
flux from flattened to cuboidal cells, and, on the other side, an auto-catalytic
transition with an ever increasing flux all along the activation phase.

Beyond our application in female reproductive biology, we believe that the
modeling approach presented here can have a more generic interest in cell
kinetics related issues, especially when a small number of cells is involved.
Also, from the mathematical biology viewpoint, the analysis performed on
the extinction time, combining theoretical (coupling) and numerical (finite
state projection) tools may have an interest for first passage time studies in
stochastic processes.
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6 Appendix

6.1 MLE parameter sets

Model β1 α2 γ µ

(R1,R4) / /
10−6

∈ (0; 0.12]
7.49

∈ [7.05; 7.83]

(R1,R3) /
1.18

∈ [0.67; 1.57] /
7.22

∈ [6.81; 7.83]

(R1,R2,R4) 106 ∈ R /
104.35

∈ (0; 105.03]
7.45

∈ [7.05; 7.83]

(R1,R2,R3)
106

∈ [1.52; +∞)
105.75

∈ [2.00; 105.88] /
7.07

∈ [5.15; 6.35]

(R1,R3,R4) /
0.27

∈ [0.022; 0.52]
10−6

∈ (0; 0.068]
7.20

∈ [6.69; 7.69]

(R1,R2,R3,R4)
106

∈ [4.64; +∞)
104.78

∈ [0.87; 105.27]
10−6

∈ (0; 104.67]
7.06

∈ [6.58; 7.56]

Table 3 Wild-Type parameter sets

Model β1 α2 γ µ

(R1,R4) / /
0.14

∈ (0; 0.28]
6.40

∈ [5.93; 6.81]

(R1,R3) /
1.63

∈ [1.26; 2.20] /
5.91

∈ [5.34; 6.35]

(R1,R2,R4)
106

∈ R /
105.11

∈ [0.12; 105.39]
6.26

∈ [5.72; 6.81]

(R1,R2,R3)
106

∈ R
106

∈ [1.52; +∞) /
5.57

∈ [5.15; 6.35]

(R1,R3,R4) /
0.52

∈ [0.21; 0.91]
10−6

∈ (0, 0.98]
5.94

∈ [5.43; 6.54]

(R1,R2,R3,R4)
2.81
∈ R+

1.16
∈ [0.28; 105.51]

10−6

∈ (0; 104.9]
5.83

∈ [5.15; 6.35]

Table 4 Mutant parameter sets
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Model Parameter Wild-Type/Mutant Dataset x·1 Dataset x·2

(R1,R4)
µ 0.015 0.005 0.01
γ 0.12 0.01 0.06

(R1,R3)
µ 0.015 0.005 0.005
α2 0.04 0.01 0.01

(R1,R2,R4)
µ 0.015 0.01 0.015
β1 0.12 0.07 0.12
γ 0.12 0.07 0.12

(R1,R2,R3)
µ 0.015 0.015 0.015
β1 0.12 0.12 0.12
α2 0.12 0.02 0.02

(R1,R3,R4)
µ 0.01 0.01 0.01
α2 0.08 0.01 0.01
γ 0.08 0.01 0.01

(R1,R2,R3,R4)
µ 0.015 0.015 0.015
β1 0.12 0.12 0.12
α2 0.12 0.12 0.12
γ 0.12 0.12 0.12

Table 5 PLE parameter size-step
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Fig. 17 Proliferation versus transition. For each subset (Wild-Type and Mutant), and
for submodel (R1,R2,R4) and complete model (R1,R2,R3,R4), we represent the optimal

value of β1 along the PLE of γ, (̂β1)
l

m|γ (the PLE of γ is given by the blue lines in the top
panels of Figure 12 and bottom panels of Figure 13).
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