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Abstract

We study the aggregation dynamics of the prion protein. We focus on the sporadic appearance of het-
erogeneous amyloid strain in in vitro polymerization experiments. We introduce and analyse a stochastic
version of the Lansbury nucleation-polymerization model. This stochastic model is able to reproduce
experimental observations where the deterministic model fails. Influence of key parameters is investi-
gated, and we prove that nucleation times can be strongly dependent, weakly dependent or even nearly
independent of the initial quantity of monomers relatively to the different values of aggregation kinetic
parameters and nucleus size. We show that our discrete and stochastic approach leads to some crucial and
new complex behaviour in the nucleation formation process: non-monotonicity of the mean nucleation
time with respect to kinetic parameters, weak dependence with respect to initial quantity of monomers,
and bimodal nucleation time distribution. These findings may help to understand experimental obser-
vations. We finally explain how this stochastic nucleation model can be seen as the building block of a
model that would explain how amyloid strain heterogeneity could arise from an homogeneous solution of
prion protein.

Author Summary

This paper deals with the study of a stochastic discrete model based on biochemical reactions of nu-
cleation, lengthening and fragmentation. The introduction of such model is motivated by the observed
heterogeneity of the dynamics of spontaneous polymerization of prion protein of in vitro experiments.
This model can be seen as a counterpart of deterministic models widely applied for protein aggregation
dynamic such as the Becker-Döring model or other nucleation-polymerization models. Such an approach
has never been applied to protein aggregation dynamic. The discrete and stochastic aspects of this model
allows us to explicitly evaluate the nucleation time, that is the first time a single nucleus (or aggre-
gate) of a critical size appear. We extensively study the statistics of the random variable defined by
this nucleation time and we obtain various analytical approximations that are compared with numerical
simulations. We show that this stochastic model helps to identify parameters such as the nucleus size -
by analysing the histogram of nucleation time obtained through repeated spontaneous polymerization in

vitro experiments. Furthermore, we prove that in a specific region of parameters, the mean nucleation
time is very weakly dependent on initial quantity of monomers, which would explain some recent in vitro

experiment observations obtained on spontaneous prion polymerization. We finally indicate how such
study can be extended to a stochastic nucleation-dependent polymerization model, and could explain
how experimentally observed heterogeneous polymer strains may emerge from an homogeneous pool of
monomers.

Introduction

Diseases such as Creutzfeldt-Jacob or Kuru for human, and bovine spongiform encephalopathies (BSE),
scrapie or chronic-wasting disease for animals are all spongiform encephalopathies and belong to a
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larger class of neurodegenerative disorders [1, 2]. It has generally been accepted that spongiform en-
cephalopathies result from the aggregation of an ubiquitous protein, the prion protein, into amyloids [3–5].
Formation of prion amyloid is believed to originate from a change of conformation of the prion pro-
tein [6, 7]. The normal, or non-pathological conformation of this protein is called PrP c, standing for
Common or Cellular Prion Protein. The abnormal, or pathological conformation is called PrP c∗. This
misfolded protein has a tendency to form aggregates. These aggregates are called PrPSc, standing for
Scrapie Prion Protein. The many different pathways leading to amyloid fibril formation from single
proteins (monomers) or pre-formed seed (polymers) are not fully understood and still subject to contro-
versy [8–17].

The neurodegenerative process could be due either to the specific form of aggregates (gain of toxic
functions) [18] or to the depletion of native PrP c monomer (loss of functions) or both phenomena. Protein
depletion would indeed be the consequence of polymerization into PrPSc polymers after a pathological
conformation change. PrP c monomers can take numerous different conformations, which could theoret-
ically produce as many PrPSc polymers strains. It has been observed [19, 20] that each polymer strain
can possess different kinetics under the same experimental conditions: polymerization rates or nucleation
time (time required for a first nucleus to be formed) could vary. Moreover, it has even been shown that
some strains are infectious for some of the mammalian species and totally harmless for other populations
(even within a same species) [8, 21–23].
A better understanding of strain formation is crucial for finding conditions under which “safe” and patho-
logical PrPSc polymers can be produced and how infectious they could be.
Two questions arise: is it possible to get coexistence of several strains produced from the same homo-
geneous population of PrP c monomers? If so, is it possible to reproduce this phenomenon within a
computational framework? The answer to the first question is yes [19, 20]. The answer to the second
question is then one of the essential key elements to be taken into account in order to get the consistency
of our model. We see below that this is possible.

We present here our mathematical model for PrPSc protein in vitro formation based on the nucle-
ation/polymerization model originally introduced by Lansbury et al. in [3]. It is the simplest model we
can build that accounts for protein conformational change, nucleation barrier and fast amyloid formation
through polymerization and fragmentation. The model consists in a set of chemical reactions, summarized
in Figure 1. First, PrP c monomers undergo reversible changes of conformation through a spontaneous
misfolding reaction (Figure 1A). Second, only the misfolded proteins PrP c∗ are then active in the aggre-
gation process and start to aggregate. These small size aggregates also called oligomers undergo reversible
aggregation and lengthening through addition/depletion of one monomer, as in the Becker-Döring model,
up to a fixed maximal size (Figure 1B) also called nucleus size. Third, once this critical nucleus size has
been reached, PrPSc polymers become stable, and they grow thanks to an irreversible successive addition
of single monomer (Figure 1C). This lengthening process is called polymerization. Finally, large polymers
can split into two pieces, not necessarily of equal sizes, through a fragmentation process (Figure 1D). For
the sake of simplicity, all kinetic rates are assumed to be independent of the size of the aggregates, so
that the same parameter value is valid for each kinetic step (see Table 1).

The mathematical formulation of this problem is given by a stochastic discrete model based on a
pure-jump Markov process [24]. In such models, each variable is represented by a discrete number and
evolves at random discrete time steps when a reaction happens. Propensities of the reactions govern
the mean frequency at which reactions occur. This choice of a stochastic discrete model enables us to
define nucleation as a discrete event, that is the first time a nucleus of a critical size is formed. Our
choice of a relatively simple model is made in order to proceed to a satisfactory mathematical analysis
and to understand the effect of stochasticity in this spontaneous polymerization process. Indeed, one
of our goals is to look for an accurate characterisation of the nucleation time (in terms of the kinetic
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parameters and the total number of proteins) that can be further compared to experimental data, as well
as a characterisation of the polymerization process once a first nucleus has been formed.

Consequently, the use of various mathematical simplifications allows us to derive analytic results
showing the dependence of the nucleation time with respect to parameters. We show in the next sections
that the stochastic nucleation model displays unusual behaviour. Indeed, within a large range of param-
eters, our investigations show that nucleation time may be roughly independent of the initial quantity of
PrP c monomers. Hence, our work indicates that experimental PrPSc formation based on data published
Alvarez-Martinez et al. in [20] can be suitably consistent with our model that includes stochastic terms
and discrete variables in the early aggregation steps.

The heterogeneity on prion structure necessary to explain heterogeneity observed in the polymer-
ization dynamics [20] can be induced by our stochastic model. Furthermore, consistent with the these
experiments, we show that such a model allows the emergence of different polymer strains from a homo-
geneous pool of monomers.

1 Results

1.1 Stochastic model

In this section, we introduce our stochastic model of protein polymerization dynamics under the form of a
stochastic aggregation-lengthening polymer model. It can be seen as a mixture of a stochastic version of
a Becker-Döring model with fixed maximal size and a stochastic model of polymerization-fragmentation.

Description of the chemical reactions Our model consists in a set of chemical reactions involving
only PrP c, PrP c∗ and PrPSc prion proteins. They can be summarized in three main stages describe
here.
1) First stage. We assume that a PrP c monomer is able to spontaneously (or sporadically) misfold in
a reversible way. The misfolded form, PrP c∗, is believed to be very unstable [25], and this process of
folding/unfolding is a very fast and frequent event (see Figure 1-A). Moreover, we assume that any mis-
folded PrP c∗ monomer is able to actively contribute to polymerization, by adding one misfolded PrP c∗

monomer to a PrPSc polymer at each step. The reaction set composed of the reversible folding/unfolding
reaction is called the misfolding process.
2) Second stage. The next step deals with the first nucleus formation, under the so called nucleation
process. This step consists in only agregation and lengthening reaction of a single misfolded PrP c∗

monomer. The polymerization reaction rate is denoted k+, and the backward depolymerization reaction
rate k−. For simplicity in our study, these k+, k− reaction rates are supposed to independent of the
aggregates size or any other parameters involved in the reaction. This may be less biologically relevant,
but the problem would be then very technical and challenging from an analytic point of view. The small
aggregates created during this early nucleation process are called oligomers and consist in a number of
monomers smaller than a given threshold size N (see Figure 1-B). At this specific size N , oligomers of
size larger than N are considered stable, so that the depolymerization reaction becomes impossible. And
so, aggregation of any misfolded monomer to this polymer of size larger than N becomes irreversible (see
Figure 1-C). This critical oligomer size N at which kinetic steps change is called nucleus size. For the
same sake of simplicity, we use a constant-size nucleus size model.
3) Third stage. Dynamics of polymers larger than the nucleus follows then a classic irreversible polymerization-
fragmentation model [2], resulting in rapid fibril lengthening (see Figure 1-D). Note that each fibril can
split into two parts of different size. And if one of the resulting size is less than the critical nucleus size,
this fragmented fibril becomes unstable again and it splits into small misfolded monomer (see Figure
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1-D). Again, polymerization rate kp and fragmentation rate kb are supposed to be independent of the
polymer size for the sake of simplicity.

Variables and Parameters Our model involves a total of 8 kinetics parameters given in Table 1. We
distinguish the number MI of native PrP c monomers (that are inactive in the aggregation reaction) with
the number MA of misfolded PrP c∗ monomers (that are active in the aggregation reaction). We suppose
that each native PrP c monomer can fold or unfold with respectively rates γ and γ∗. In some parts of
our study below, we may assume that this folding process is fast enough to consider only the equilibrium
state and we denote it by c0 = γ/γ∗. We denote by Pi the number of each polymer of size i ≥ 2.
As explained before, the polymerization rate k+, and dissociation rate k− in the nucleation steps are
supposed independent of the size i ≤ N , where N is the critical nucleus size. In some parts of our study
below, we rescale the equilibrium rate, and denote it by q = k−/k+. Finally, once the fibrils are formed
and of size larger than N , we denote by kp the polymerization rate (independent of its size i ≥ N), and
by kb the PrPSc polymer splitting rate. The fragmentation kernel is taken as a uniform kernel, that is
the size of one of the two polymers resulting from a fragmentation event is picked according to a uniform
law among all the possible lower sizes. Finally, we denote by M the total mass of the system (that is the
total number of proteins present in the system, in all various forms PrP c, PrP c∗ and PrPSc).

Stochastic formulation of the model We now detail the way we implement our set of chemical
reactions in a stochastic model. We model the time evolution of the discrete number of each element,
and each reaction event is explicitly expressed. Formally, this stochastic model is based on a continuous
time Markov chain. The space state of the Markov chain is finite and included in J0;MKM+1 (note that
there is M +1 species and each specie cannot exceed M). Each reaction is now interpreted as a possible
transition for the Markov chain. Hence, the model is fully defined by the propensity and state-transition
of each possible reaction. All the possible transition are summarized in Table 2. Initial condition is always
taken as a pure PrP c monomer state, to reproduce spontaneous polymerization experiments. This model
can be simulated according to a Gillespie algorithm [26]. Exact sample paths of the stochastic model
are calculated by this computational method, by successively choosing one reaction among all possible
according to their propensities. The chosen reaction is executed (which modifies the number of the
involved species), the time is updated, and a new reaction is chosen, and so on. We present a typical
simulation in figure 2. This illustrates the different steps of the model : namely the misfolding, nucleation
and the polymerization-fragmentation steps. An important property of such models is mass conservation,
that is the total number of monomers (the free PrP c and PrP c∗ ones, and the ones composing PrPSc

polymers) is constant over time. Indeed, since we are dealing with in vitro experiment, we assume
that there is no source of monomers, and no degradation either. Theoretically, time evolution of the
probabilities to be in a particular state are governed by the master equation [24]. However, due to
the high dimension of the state space and the complexity of the different possible states in the system,
we do not follow the master equation approach to study our model. We use instead an averaging and
limit theorem strategy as in [27] to simplify our model, using various assumptions such as time-scale
separation, to be detailed in the next paragraph. A simpler linear model, and a deterministic model is
then solved analytically, and numerical simulations validate the different approximations performed in
the next sections.

1.2 Fast misfolding process results in an average fraction number of active

PrP c∗ monomer

The misfolding process between normal PrP c and abnormal PrP c∗ prion monomer conformations is an
additional step taken into account in our model, which to the best of our knowledge has never been
considered in similar models before. This step, as we have mentioned before, is quite fast since the
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folding/unfolding of one monomer is a rapid event in comparison with the other molecular interactions.
It introduces therefore an additional time scale to our system, which becomes analytically challenging. It
appears then natural and necessary, that for technical reasons, we simplify this new system and reduce the
number of our parameters, starting with this folding/unfolding step. Such a simplification is standard
in the deterministic ordinary differential equation theory [28]. However, it has been recently used in
stochastic equations as well (see [27] for instance).
In our paper, we use a similar method to tackle our problem. That is, we assume that the two monomer
folding reaction rates γ and γ∗ involved in the conformation change are fast enough to reach almost
immediately an equilibrium in comparison with the other reaction time scales. This hypothesis, is given
by (H1) :

(H1)







γ � 1, γ∗ � 1,

c0 =
γ∗

γ
< ∞.

Consequently, it we take (H1) into consideration in our nucleation-polymerization model (detailed in the
previous section 1.1 and sum up in Table 2), the associated fast subsystem consisting of PrP c (correctly
folded) monomers, whose number is denoted by MI , and PrP c∗ (misfolded) monomers, whose number is
denoted by MA, has a unique equilibrium distribution, only depending on the total quantity of monomer
MF (t) := MI(t) + MA(t) and is given by the following binomial distribution of parameter MF (t) and
γ∗

γ+γ∗
:

MI(t) ∼ B(MF (t),
γ∗

γ + γ∗ ),

MA(t) = MF (t)−MI ∼ B(MF (t),
γ

γ + γ∗ ).

The binomial distribution is a consequence of the first-order reaction kinetic assumed in our model for the
folding process, and reflects the fact that every monomer has a probability γ∗

γ+γ∗
to be correctly folded,

and a probability γ
γ+γ∗

to be misfolded, independently of the other monomers (as in a toss-coin model).

So, if (H1) holds, MA is a fast switching variable and the quasi steady-state first two moments are given
by

< MA > (t) = MF (t)
γ

γ + γ∗ ,

< MA(MA − 1) > (t) = MF (t)(MF (t)− 1)
( γ

γ + γ∗

)2

,

and so, the mean number of misfolded protein and its variance are proportional to the total quantity of
monomer and its variance, respectively. We can reduce further the number of parameters in our model

with the following. Rescaling the time as being τ = γk+

γ+γ∗
t, and using the following notations

q :=
k−

k+
,

c0 :=
γ∗

γ
,

q0 := q(1 + c0),

Kb :=
kb
k+

(1 + c0),

Kp :=
kp
k+

(1 + c0),

the resulting stochastic nucleation-polymerization system consists in a single monomer species (whose
number is denoted by MF ) and polymer species (Pi, i ≥ 2). Hence, the state-space of the model is now



6

included into J0;MKM (as in traditional coagulation-fragmentation model, one variable for each size).
Kinetic rates are adjusted to take into account only the fraction of monomers that actively participate to
the nucleation process. The resulting set of transitions in this model with condition (H1) are summarized
in Table 3, and fully define a new Markov chain model.

1.3 Nucleation lag time analysis reveals three distinct bevahiors

Nucleation lag time corresponds to the time when the very first nucleus (an aggregate of size N , by
definition) is formed. The nucleation lag time is defined as follows:

T = inf{t ≥ 0, PN (t) = 1}. (1)

Let us denote by < T > its mean values, uT (t) its probability distribution and ST (t) =
∫∞
t uT (s)ds its

tail distribution.

The simplifying assumption (H1) in the reduced system (see section 1.2 and Table 3), allows us to
deal with only four parameters during the nucleation process, that are namely the initial total number
of monomers M , the equilibrium monomer folding rate c0, the equilibrium polymerization/dissociation
reaction rate q involved in the nucleation step, and the nucleus size N . The other parameters ( Kp, Kb)
are only relevant when at least one nucleus has been formed (see section 1.4).

Case c0 = 0 Let us discuss the nucleation lag time statistics for the reduced stochastic model (defined
in Table 3) with c0 = 0, for mathematical convenience (which correspond to an homogeneous pool of
misfolded monomer). We are aware that it seems obviously more biologically relevant to consider c0 > 0
in a biological system. This latter case will be analysed further down in this paper.
Let us consider now only the case c0 = 0. In such a case, there is no folding / misfoding exchange
between monomers and the model appears to be a conservative Becker-Döring model with constant
kinetic coefficient (independent of the aggregates size), and with fixed maximal size, given by N (as we
are only interested in the nucleation time here). The statistic of the nucleation lag time as a function of
the aggregation / disaggregation kinetic rate q for the stochastic version of the Becker-Döring model has
been studied in a companion paper [29]. In that paper, it has been shown that:
1) In the unfavourable case for nucleation formation, when q � M , a pre-equilibrium assumption (that
is all oligomer of size less than N are in equilibrium states) becomes valid and the lag time distribution
is close to an exponential distribution. The parameter of the exponential is approximated by

2qN−2

MN
. (2)

In general, however, the parameter of the exponential distribution is given by the second order asymptotic
moment value

< MFPn−1 > (t → ∞) (3)

of a Becker-Döring model with finite maximal size equal to N − 1. Such asymptotic moment is given
by the previous expression (2) only when correlation between variables can be neglected, and when the
mean value is closed to the deterministic model due to standard mean-field hypotheses. The exact com-
putation of such second order moment value seems to be an unreachable problem, but it can however be
sorted out with numerical simulations (see numerical results and discussion in [29]) or moment closure
techniques [30]. The exponential function for the nucleation time distribution arises in the limit of fast
aggregation/disaggregation rate q � M because the reaction MF + PN−1 → PN is occurring at a time-
scale much slower than any other reactions in the system. As a single firing occurrence of such reaction
is needed for the nucleation event to appear, the exponential function is then just a consequence of the
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Markovian property of the stochastic model.
2) The mean nucleation time is a non-monotonic function of the aggregation/disaggregation rate q, and
< T >→ ∞ as q → 0. Hence, if we start with a small value of q, then increasing this rate would lead to
a shorter mean nucleation time. This unexpected effect arises from a redistribution of trajectory weights
such that upon increasing the rate q, paths that take a shorter time to complete a cluster become more
likely. This effect is also the consequence of single-monomer aggregation hypothesis. For small rate q,
trajectories for which only few (or none) free monomers remains before a nucleus is formed leads to
a longer nucleation process, as some aggregates must lengthen (at speed roughly of 1/q) to free some
monomers so that other aggregates can grow again. For larger q, the quantity of free monomers is high
enough to allow the aggregates to grow up to the nucleus size.

Analytical result: in the favourable aggregation limit, as M � q, it is possible to obtain analytic
approximation, which we now present here. This completes then the picture of the nucleation time
analysis, and allow us to deduce the behaviour of the nucleation time as a function of the total initial
quantity of monomers M . As written in the introduction, such relationship between nucleation time and
initial quantity of monomers is important as it can be obtained experimentally.

As the initial number of monomers is large, the early dynamics of the stochastic model behaves as a
deterministic model, with a standard mean-field hypothesis. It is known [31, 32] that under favourable
aggregation limit assumption, a deterministic Becker-Döring model exhibits the following successive pe-
riods:
- firstly, the model behaves as irreversible aggregation process during a time-scale of order (e/M)log(1/q),
until monomer concentration becomes small;
- secondly, when the monomer concentration is of order q, there is a metastable period in which each
concentration species of size i ≥ 1 are nearly constant, equal to (by definition) p∗i (see Figure 5). Those
values are distinct from steady-state values;
- thirdly, at time scale of order 1/q (which is the time scale of aggregates lengthening), larger aggregates
are created within a process akin to diffusion in the size i-space (slow redistribution of aggregates size);
- Finally, every concentration species reach their steady-state values within a time scale of order 1/q2.

For an accurate approximation of the nucleation time (i.e. the time to reach the first nucleus), we
need to understand in which of these periods a first nucleus appears. This mostly depends on the critical
size N of the nucleus as follows.
Here is how we do proceed: in order to compute this approximation, we compute the metastable deter-
ministic values p∗i for our model (see subsection 3.1 and Table 4). Indeed, if the stochastic model follows
closely the deterministic model, the nucleus number PN (t) (which is an integer in the stochastic model)
will be close to p∗N during the metastable period. Hence, for small enough N such that p∗N � 1, we expect
PN (t) to reach one in the pure-aggregation period (that is before the metastable period). In the opposite
case, for large enough N such that p∗N � 1, we expect PN (t) to reach one after the metastable period.
We now distinguish between the two cases and provide an analytical approximation for both cases.

a) In the small nucleus size scenario, p∗N � 1, a first nucleus appears while there is still a large number
of monomers. With a crude approximation, we can treat the number of monomers as a constant number,
equal to its initial value M . In this constant monomer formulation (see subsection 3.2), the stochastic
model becomes linear (that is all the reaction propensities are linear functions of the species numbers).
Such linear model is analytically solvable (see subsection 3.2), and we can deduce the nucleation time
distribution. Hence, we find that in the favourable case M � q and small nucleus size scenario p∗N � 1,
the nucleation time distribution uT in the stochastic model is approximated by a Weibull distribution
and the mean nucleation time is given by

< T >∼ (2(N − 1)!)1/(N−1)

MN/(N−1)
. (4)
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b) In the large nucleus size scenario, p∗N � 1, the relevant time scale is given by the metastable period
and is of order 1/q. Therefore, we can neglect the initial pure-aggregation phase, and use the metastable
values p∗i as initial values for a linear model where the monomer number is constant and equal to p∗1
(see Figure 5). Again, this linear model can be solved analytically and used as an approximation of the
stochastic model. Hence, in the favourable case M � q and large nucleus size scenario p∗N � 1, the
nucleation time depends on the value of p∗1, given by (see subsection 3.1)

p∗1 = q
p∗2 +

∑N−1
i=2 p∗i

∑N−1
i=2 p∗i

, (5)

where all p∗i , i ≥ 2, are linearly proportional to M (see subsection 3.1). As a consequence, p∗1 is inde-
pendent of the initial number monomers M and is of order q. Thus the nucleation lag time depends on
M only through the initial condition p∗i , i ≥ 2, and is found to be (see numerical results in the next
paragraph) almost independent of M for N larger than 15. Finally, note that there is a small probability
that a nucleus is formed before the metastable period, which we neglect here (see next paragraph).
Hence, in the favourable aggregation limit, as M � q, we have two different analytical approximations,

according to the nucleus size N . We now turn to the numerical study (using Gillespie’s algorithm), in
order to validate our analytical approximations.

< T > versus M and numerical result Numerical results (see methods in subsection 3.3) confirm
the analysis performed above, for both mean nucleation time and nucleation time distribution. Let us
summarize here the different approximation we have derived (see also Table 4).

In log scale, the mean nucleation time < T > as a function of the number of initial monomers M has
either two or three main behaviours (depending on parameter values) which we now describe (Figure 3,
4).
1) In the unfavourable case, that is for small M � q, the mean lag time is given approximately by

< T >∼ 2qN−2

MN
, (6)

and the exponential approximation for the nucleation time distribution uT is valid.

2) For intermediate M and large N , p∗N � 1 and the mean lag time is roughly independent of M . In
such case the linear metastable approximation is valid. Nucleation time distributions are bimodal in
such region, due to the following dichotomy : the first peak is formed by trajectories for which a nucleus
appears before the metastable period (during the pure-aggregation period), and the second peak by the
trajectories for which a nucleus appears during the metastable period. As the two periods occur at dif-
ferent time scale (the pure-aggregation time scale is (e/M) log(1/q), the metastable time scale is 1/q),
this leads to two distinct peaks in the nucleation time distribution. The linear metastable approximation
captures the second peak of such distribution (Figure 5). And the larger N is, the smaller p∗N � 1 is and
the weight of the second peak is then more important (it is much likely that the nucleus is formed after
the metastable period). The bimodality of the nucleation time distribution is the consequence of the two
distinct time scales, and the fact the nucleation event can occur in both time scales in the case p∗N � 1.
This is not possible in an other parameter region.

3) Finally, for larger M , p∗N � 1 and the mean lag time follows approximately

< T >∼ (2(N − 1)!)1/(N−1)

MN/(N−1)
, (7)

and the Weibull approximation (given by the constant monomer scenario) for the nucleation time distri-
bution uT is valid.
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Extension for c0 > 0 The case with c0 > 0 (that includes a reversible misfolding process, taken at
equilibrium) does not add any analytical challenge, but only modifies criteria and analytic approximations
as follows.

• when q0 � M , the lag time distribution is close to an exponential distribution of mean parameter

< T >∼ 2qN−2

(1 + c0)NMN
, (8)

• when M � q0, a similar dichotomy as in paragraph 1.3 is still valid. Hence for small N , the
distribution is approximated by a Weibull distribution and the mean nucleation time is given by

< T >∼ (2(N − 1)!)1/(N−1)

((1 + c0)M)N/(N−1)
. (9)

For larger N , the same linear approximation is valid, with the values of p∗i changing (see section
3.1), and

p∗1 = q0
p∗2 +

∑N−1
i=2 p∗i

∑N−1
i=2 p∗i

. (10)

These calculus end up our nucleation time analysis. The different behaviors of the model for the
nucleation time with parameter criteria are sum up in Table 4. The importance of this deep study for
experimental analysis of nucleation time is discussed in the section 2.

1.4 Nucleation formation study suggests two different regimes for polymer-

ization dynamics

We now focus our analysis on the full stochastic discrete model of spontaneous nucleation-polymerization,
in order to understand the polymerization dynamics, after the first nucleus has appeared. We still
restrict ourselves to the reduced version described in subsection 1.2 and summarize it in Table 3, with
instantaneous equilibrium between normal PrP c and misfolded PrP c∗ monomers.

In most of nucleation-polymerization-fragmentation models, once some polymers are formed, there
exist two ways to create more polymers: either by fragmentation of existing polymers (sometimes referred
as secondary nucleation) or by addition of new polymers through spontaneous nucleation.

Our previous analysis of the nucleation lag time (subsection 1.3) suggests two different limits where
only one of the two ways to create more polymers is dominant over the other one. Indeed, in the previous
section we successively give the cases where q � M and M � q. In the first unfavourable aggregation
case, q � M , appearance of nucleus through spontaneous nucleation is unlikely, and once a first nucleus
appears, the dynamic is governed by the fragmentation process leading to an increase of the number
of polymers and hence accelerates the polymerization production process. In the opposite favourable
aggregation case, M � q, the appearance of new nucleus is rather governed by spontaneous nucleation,
as once a single nucleus is formed, many others are created successively.

Again, for simplicity, as a first step, we take c0 = 0, and then, similar results hold for c0 > 0 due to
the pre-equilibrium hypothesis.

1.4.1 Hybrid polymerization-fragmentation approximation for the unfavourable case q �
M

In such limits q � M , new nucleus are unlikely to appear compared to the fragmentation process. That
is, when one nucleus has been formed, its polymerization dynamics becomes faster than the nucleation
process of prion proteins and prevents these latter from creating a new nucleus. In this particular case,
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almost all monomeric proteins contribute then to the polymer lengthening. To describe this process,
we use here a treatment of the stochastic system that takes stochasticity in the fragmentation part into
account. This is based on biological assumption (fast growing polymers) where the possibility of nucleation
is ignored. We found that the total mass of polymers, Z(t) =

∑

i≥N iPi(t), can be approximated by (see
subsection 3.4) ẑn, where

ẑn = z(t) +
1√
n
ξ(t), (11)

with






ṁ(t) = −Kpm(t)p(t),
ż(t) = +Kpm(t)p(t),
ṗ(t) = +Kbz(t),

(12)

and














ξ(t) = −Kp

∫ t

0

p(s)ξ(s)ds+Kp

∫ t

0

m(s)ρ(s)ds,

ρ(t) = Kb

∫ t

0

ξ(s)ds+W (

∫ t

0

Kbz(s)ds)

(13)

whereW is a standardWiener process, and n a scaling parameter of the polymerization and fragmentation
rate (see subsection 3.4). Thus, the total mass of polymers Z(t) =

∑

i≥N iPi(t) can be approximated by
a Gaussian process ẑn(t) of mean value z(t) and variance























































< ξ2(t) > =

∫ t

0

Kbz(s)A(s, t)ds,

A(s, t) =
b2

a2 + 4bc

(

e
a−

√
a2+4bc
2 − e

a+
√

a2+4bc
2

)2

,

a = −Kp

∫ t

s

p(u)du,

b = Kp

∫ t

s

m(u)du,

c = Kb(t− s).

(14)

Those equations arise from a central limit theorem in the limit of large population of proteins and fast
polymerization. The first set of equation (12), which gives the mean behaviour, is the classical deter-
ministic model of polymerization-fragmentation in the case of constant kinetic parameters and uniform
fragmentation kernel (written with the use of aggregate variable, see [33]). This deterministic model
describes the time evolution of the number of monomers (m(t)), the mass of polymers (z(t)) and the
number of polymers (p(t)). The mass of polymers grows proportionally to the number of encounters of
monomers and polymers, given by m(t)p(t). The number of polymers grows by fragmentation of existing
polymers. The fragmentation occurs at a rate proportional to their mass.

In our approximation, the fluctuations around the mean behaviour, given by the second set of equations
(13), are governed by the fragmentation process, the variance of mass of polymers being proportional to
the fragmentation rate (equation (14)).

It is important to note that such analytic expression is of practical importance thanks to the work
provided by Knowles et al. in [34]. The authors were indeed able to give an accurate formulation of
the solutions of the deterministic equation (12) using a fixed-point iteration method. They obtained the
following expressions:

{

z(t) = z(0) +m(0)−m(0) exp
(

− K − pc1
κ

(eκt − 1) +
Kpc2
κ

(e−κt − 1)
)

,

p(t) = p(0) + c1(e
κt − 1) + c2(e

−κt − 1).
(15)
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where


















c1 =
1

2
(p(0) +

Kb

κ
z(0)),

c2 =
1

2
(p(0)− Kb

κ
z(0)),

κ =
√

KbKpM

(16)

Consequently, this derivation allows us to solve equation (13) and to get an accurate expression of ẑn,
which approximates the total mass of polymers Z(t) in the full discrete stochastic model (Figure 6), in
the limit q � M . This study may be used to get an expression of the lag time required for the total mass
of polymers to reach a given fraction h ∈ (0, 1) of the total mass in the system (such quantity is used as
a measure of the nucleation time in a continuous model [20]), with

Th := inf{t ≥ 0 : Z(t) ≥ hM} ≈ T̂h := inf{t ≥ 0 : ẑn(t) ≥ hM}. (17)

The statistic of the latter quantity is easily derived by

P
{

T̂h ≥ t
}

= P
{

ξ(s) <
√
n(hM − z(s)), 0 ≤ s < t

}

. (18)

Although we do not pursue on this here, note that such quantity may also be used to quantity the
characteristic time of the polymerization process, or the polymerization speed, in a discrete stochastic
model.

1.4.2 Nucleation dominant limits for the case M � q

In the opposite case, M � q, we see that a large quantity of oligomers is created during the nucleation
period, which may eventually lead to many nucleus and polymers after a slow metastable phase of
length 1/q. Once this phase ends, oligomers continuously lengthen into polymers adding more and more
polymers. Then, the existing polymers do not polymerize as fast as new nucleus appears, because free
monomers are not present in large quantity (of order q � M). Thus, the overall polymerization process
is dictated by oligomer disappearance (and creation of new nucleus) rather than polymer growth and
fragmentation, and occurs at a speed of order 1/q.

We illustrate the deterministic nucleation dominant approximation with several realizations of simu-
lations (Figure 7). As a consequence, polymerization kinetic parameters Kp and Kb have little influence
in such case as long as they are sufficiently large ( so that they do not limit the polymerization process).
In other words, polymer mass time evolution follows a deterministic curve, shifted from one another due
to the variability in the nucleation time.

2 Discussion

In this paper we have analyzed the statistics of the nucleation time in a stochastic Becker-Döring nucle-
ation model. We have also extended our analysis to a nucleation-dependent polymerization model.

Literature review on lag time studies. A few stochastic model have been applied to protein aggre-
gation kinetics in general, and prion amyloid formation in particular. One major focus of these studies
was the distribution shape of the lag time, defined in all quoted work as the time for the polymer mass
to reach a given critical level [35–38]. In [36], the authors used a simple autocatalyic conversion kinetic
model to obtain the distribution of incubation time. Under the assumption that the constant rate in-
volved is a log-normally distributed stochastic variable, the incubation time is then also shown to be log
normal distributed. In [35, 37], the authors derived the distribution shape of lag time using assumptions
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on probabilities of nucleus formation event. Hofirchter [37] exhibited a delay exponential distribution,
while Szabo [35] obtained a β-distribution, useful to experimentally deduce the rate of a single nucleation
formation. In [38] the authors derived a phenomenological model to get the mean time needed to obtain
a certain amount of polymer, given one initial seed and given assumptions of distribution of aggregation
and splitting times. This expression allowed them to discuss the influence of initial dose or other param-
eters on the incubation time. Using a purely stochastic sequential aggregation of monomers and dimers
model was their strategy to obtain different lag time distributions as a γ-distribution, a β-distribution or
a convolution of both.

A stochastic discrete aggregation kinetic model. In our approach, we do not use a phenomeno-
logical model, where nuclei are supposed to appear at a given rate, but a purely stochastic aggregation
kinetic model, where nucleus formation is the result of successive addition and disassociation of single
misfolded monomer. This discrete stochastic model allows us to define a nucleation time to be the time
needed to form the first polymer of a given critical size. Up to our knowledge, such definition, although
relatively simple, had never been considered for describing protein nucleation kinetics before. Previous
initial analysis of this discrete stochastic model were performed in [29,39,40], but the specific dependence
of the statistics of the nucleation time with respect to the total quantity of monomers was not considered.

Stochasticity helps identifying parameters (nucleus size). Our analysis has shown that a stochas-
tic Becker-Döring nucleation model leads to three different regimes for the nucleation time, according to
parameter values. We have reduced our analysis to three main parameters: the total number of protein
M , the normalized dissociation kinetic rate q, and the nucleus size N . In the extreme favourable case
where proteins are initially present in a large quantity, M � q, the mean nucleation time is roughly
inversely proportional to the total quantity of monomers, and the nucleation time distribution follows a
Weibull distribution. In the extreme unfavourable case, q � M , the mean nucleation time decreases as
1/MN as the total quantity of monomers M increases, and the nucleation time distribution follows an
exponential distribution. These two regimes are well known in the literature, within a deterministic mod-
elling framework [41, 42]. They have implications in terms of identifiability of parameters. In particular,
the nucleus size can be identified from experimental data only in the regime q � M , with a plot of the
mean nucleation time versus the total quantity of monomers.
However, one difficulty that remains is to know whether the unfavourable assumption is valid or not.
Our analysis shows that experimental nucleation time distribution may help to know in which parameter
regime spontaneous polymerization experiments were performed. Indeed, probability distribution are
very different (Weibull and exponential) in the two extreme favourable and unfavourable regimes. Hence,
a statistical treatment of repeated spontaneous polymerization experiments can extract experimental nu-
cleation time distribution and help to discriminate between both extreme parameter region. Moreover, in
the favourable case M � q, the nucleation time distribution may help identifying the nucleus size as well
(while the mean nucleation time cannot help in such case), as the Weibull distribution initially increases
at speed tN−1. To be helpful, this requires a high number of repeated experiments to accurately derive
an estimate of the nucleation time distribution.

The stochasticity brings new behaviour (and explains experimental data): independence of
nucleation time with respect to initial number of monomers. Apart from these two well-known
regimes, the discrete stochastic Becker-Döring model displays an additional feature for the nucleation
time statistics. In the favourable case, M � q, and large nucleus size N , the mean nucleation time
is very weakly dependent on the total mass of monomers, and the probability distribution is bimodal
(this is related to a metastability phenomena, see section 1.3). Up to our knowledge, this behaviour has
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not been reported before in a computational framework, and is specific to a stochastic treatment of the
Becker-Döring nucleation model.
In vitro polymerization experiments of prion protein give some interesting insights of what could be
the different mechanisms involved in the nucleation process. In particular, the observed dynamics of
prion polymerization can be compared to the result of mathematical modelling, and different biological
hypotheses can be tested. One of the challenges of the prion polymerization experiments resides in
the low sensitivity to the dynamical properties of the polymerization on initial concentration of PrP c

protein [12, 42–44]. Our findings may explain recent experimental observations for spontaneous prion
polymerization experiments [20], where the mean nucleation time decreases as M−0.5 or lower as the
initial quantity of monomers M increases. According to our mathematical modelling approach, this
suggests a favourable case scenario, M � q and large nucleus size N ≥ 15. One way to test this
hypothesis would be to estimate the nucleation time distribution from the experimental data in [20].
To be consistent with our prediction, the estimated distribution should be bimodal. For the reader
convenience, and with permission of [20], we have reproduced nucleation time statistics extracted from
the experimental data in [20], in Figure 8. The very few numbers of available experiments unfortunately
prevents us to derive a serious conclusion from it, but may give an important future direction of research.
Another important direction of research includes a generalization of this work for size-dependent kinetic
rate, and more general coagulation-fragmentation process.

Extension to a nucleation-dependent polymerization model: the nucleation source term.
The extension of our analysis to a nucleation-dependent polymerization model also suggests two differ-
ent behaviours for such model: one where the fragmentation process dominates the production of new
polymers (q � M), for which a Gaussian approximation is valid; and one where the nucleation process
dominates the production of new polymers (M � q), and the polymerization kinetic parameters Kp and
Kb have little effect. Our findings may help to understand/justify the addition of a nucleation source
term in a deterministic polymerization-fragmentation model, usually as MN [16, 33, 34, 45]. However,
according to our study, this term is only justified in the pre-equilibrium hypothesis corresponding to the
unfavourable case q � M . Hence, another important consequence of our work (at least from a theoretical
perspective) is to justify nucleation source term in deterministic model.

The stochasticity allows heterogeneity of polymer structures to emerge from an homoge-
neous pool of monomers. Finally, it has been argued [20] that different monomer conformations
may lead through the nucleation process to different polymer structures, and thus different polymer-
ization kinetic, as different polymer strains may have very distinct physical and chemical properties for
the aggregation process. In spontaneous polymerization experiments, competition for the first nucleus
may govern the production of a particular polymer structure rather others. When this first nucleus is
created, it gives birth to a fast fibril lengthening process and acts like a steam roller giving theoretically
little chances for other strains to get enough time to form their own first nucleus. This may be the
reason why coexistence of two different strains has hardly been observed in a same in vitro experiment.
However, as mentioned in introduction, this phenomenon is not impossible. And such a coexistence can
be observed and so should be able to be simulated in a stochastic model. From our point of view, the
simplest and best approach is to consider a stochastic model of the nucleation process, where a nucleation
event is described by a creation of a given critical size aggregate. The analysis of our stochastic model of
nucleation-dependent polymerization is thus the first step to include heterogeneity of polymer structures
in a nucleation-dependent polymerization model. In a future model, heterogeneity of polymer structures
will then emerge from an homogeneous pool of protein monomers through the competition of different
nucleation process, corresponding to different misfolded conformation. The statistic of the nucleation
time and the polymerization speed is then crucial to study such a competition model.
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3 Materials and Methods

3.1 Computation of the metastable equilibrium values p∗
i

A deterministic version of the Becker-Döring model described in Table 3 can be represented as a set of
ordinary differential equation



































ṗ1(t) = − 1

1 + c0
p21 − p1

N−1
∑

i=2

pi + 2q0p2 + q0

N
∑

i=3

pi,

ṗ2(t) = −p1p2 +
1

2(1 + c0)
p21 − q0p2 + q0p3,

ṗi(t) = −p1pi + p1pi−1 − q0pi + q0pi+1, 3 ≤ i ≤ N − 1,
ṗN (t) = p1pN−1 − q0pN .

(19)

Letting q = 0 and c0 = 0, and using τ =
∫ t

0
p1(s)ds, the system (19) becomes































ṗ1(τ) = −
N−1
∑

i=1

pi,

ṗ2(τ) = −p2 +
1

2
p1,

ṗi(τ) = −pi + pi−1, 3 ≤ i ≤ N − 1,
ṗN (τ) = pN−1.

(20)

Upon taking Laplace transform, zi(s) =
∫∞
0

e−sτpi(τ)dτ , letting N large and using the mass conservation
property, we obtain the exact formula











z1(s) =
2Ms

s2 + (1 + s)2
,

zi(s) =
Ms

(s2 + (1 + s)2)(1 + s)i−1
2 ≤ i,

(21)

Taking Laplace inverse transform, we have

p1(τ) = Me−τ/2
(

cos(τ/2)− sin(τ/2)
)

, (22)

which goes to 0 as τ → π/2. The exact expression of p1(t) in the original time scale can now be obtained
(at least, numerically) by the inversion of the nonlinear transformation that defines τ . We can proceed
similarly for each pi to obtain an expression for the lag time in the irreversible aggregation period. Also
we can use the inverse Laplace transform of (21) and letting τ → π/2 to obtain asymptotic values p∗i ,
i ≥ 2, during the irreversible aggregation period. We give in table 5 the values of p∗i /M for i = 2..15.
If p∗N = pN (τ → π/2) � 1, then a sufficient quantity of nucleus will be reached during the irreversible
aggregation period. For instance, for N = 10, p∗N > 1 for M > 6.0741104, while for N = 15, p∗N > 1 for
M > 1.5149109. The value of p∗1 is of order q, and an approximation of the value of p∗1 can be obtained
by using the first equation of (19), which gives equation (5).

Finally, remark that with c0 > 0, a similar procedure leads to











z1(s) =
2M(1 + c0)s

(1 + 2c0)s2 + (1 + s)2
,

zi(s) =
Ms

((1 + 2c0)s2 + (1 + s)2)(1 + s)i−1
2 ≤ i,
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3.2 The linear model is analytically solvable

We analyse in this part a modification of the stochastic model described in table 3 where we consider the
quantity of free monomer MF as a constant over time, that is MF (t) ≡ M for all time t > 0. We restrict
for simplicity to the case c0 = 0, while results for c0 > 0 follows by a similar method.

The main advantage of the constant monomer formulation is to be analytically solvable (within our
specific choice of parameters, independent of cluster size). As MF is constant, the propensities of the
reaction becomes linear, and it is known in this case that the time-dependent probabilities to have a given
number of aggregate of size i are given by a Poisson distribution [46]. Such distribution is characterized by
a single parameter, its mean for instance. Again, the model being linear, the mean number of aggregate
of size i, at time t, is given by the solution of a deterministic ordinary differential equation which can be
rewritten as

dp

dt
= Ap+B,

dpN
dt

= MpN−1,

(23)

where

p =











p2
p3
...

pN−1











, A =















−q −M q
M −q −M q

. . .
. . .

. . .

M −q −M q
M −q −M















, B =











M2/2
0
...
0











(24)
We give now for the sake of completeness the associate exact results.

General solution of the linear model We give here the general solution of the linear model, intro-
duced in equation (23)-(24). We note that the size of the matrix A is N − 2. A general form for pi(t),
2 ≤ i ≤ N − 1 is given by

pi(t) =

N−2
∑

k=1

αke
λktV

(k)
i−1 − (A−1B)i−2,

where λk = −(M + q)+ 2
√
Mq cos( kπ

N−2 ) are the eigenvalues of A, V (k) the associated eigenvector, (V
(k)
i

denotes its ith component), and αk are constant given by the initial condition. Exact formula for V (k)

are given by [47]

V
(k)
i =

√

M

q
sin(

kiπ

N − 1
),

and the vector α = (αk)1≤k≤N−2 is given by

α = V −1
(

A−1B+ f(0)
)

By integration,

pN(t) = M
[

N−2
∑

k=1

αkV
(k)
N−2

eλkt − 1

λk
− (A−1B)N−2t

]

.

Finally, the tail distribution of the nucleation time is given by

ST (t) = P
{

T > t
}

= P
{

PN (s) = 0, 0 ≤ s ≤ t
}

= P
{

PN (t) = 0
}

= exp(−pN (t)),

the last equality being the consequence that PN (t) follows a Poisson distribution of mean parameter
pN (t).
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Asymptotic We detail below two asymptotics, which are of interest for their own, as well for the
original model described in table 3. The two limits we look at are the unfavourable case q � M and the
favourable case M � q. In such cases the mean lag time is given by

< T > ∼M�q
(2(N − 1)!)1/(N−1)

MN/(N−1)
,

< T > ∼M�q
2qN−2

MN
,

(25)

from which we can deduce

log(< T >) ∼M�q − N

N − 1
log(M) ∼ − log(M),

log(< T >) ∼M�q −N log(M).

(26)

Similarly, there are two different asymptotic distributions for the lag time, given respectively by a
Weibull and an exponential distribution,

uT (t) ∼t→0
MN

2(N − 2)!
tN−2 exp

(

− MN

2(N − 1)!
tN−1

)

,

uT (t) ∼t→∞
MN

2qN−2
exp

(

− MN

2qN−2
t
)

.

(27)

Hence, the mean nucleation time in the monomer constant formulation model has two main different
behaviours:

• For unfavourable aggregation (M � q), the nucleation time distribution is exponential, and the
mean nucleation time depends strongly on the number of active monomers M , linearly with a factor
−N in log scale.

• For favourable aggregation (M � q), the nucleation time distribution is a Weibull distribution, and
the mean nucleation time depends weakly on the number of active monomers M , linearly with a
factor almost equal −1 in log scale.

3.3 Numerical methods

We performed a Gillespie algorithm, a stochastic simulation algorithm [26] from the stochastic models
described in table 2 and table 3. In these stochastic models, reaction propensities are given through
action-mass law (with discrete number of molecules) and state change vector by the stoichiometry of the
reactions. The algorithm simulates the successive stochastic discrete events that occur in the system and
is an exact formulation of the stochastic process. Figure 2 was obtained from this algorithm for the model
described in table 2. For the study of the nucleation time, stochastic simulation were obtained for the
model described in table 3 with MA(0) = M , Pi(0) = 0 for 2 ≤ i, and γ = γ∗ = kb = 0. Simulation were
stopped when PN = 1 and the nucleation time was recorded accordingly. The initial number of active
monomers M was taken to vary over 9 orders of magnitude (from 100 to 109). The equilibrium constant
q was taken to vary over similar ranges of magnitude, to investigate both cases q � M and q � M . The
nucleation size N was taken to vary from 3 to 20, according to literature [33, 48].

3.4 Limit theorem

Suppose we have P (t) polymers of size respectively Ri, i = 1..P (t), and that each polymers grow by
addition of one by one monomers, at a speed given by a Poisson process of parameter kpM(t) where M(t)
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is the quantity of monomer at instant t. Assume similarly that each polymer of size Ri can break into
two pieces of size 1 ≤ r ≤ Ri − 1 and Ri − r, following a Poisson process of rate Rikb. The splitting size
r is chosen uniformly among [1, Ri − 1]. Now suppose the total mass of monomers is large, of order n a
large scaling parameter. We then let

mn(t) = M/n,
rni (t) = Ri/n.

(28)

As n → ∞, the standard scaling of poisson process gives us that (mn, (rni )1≤i≤P (t)) converges to the
solution of the hybrid model given by



































ṁ(t) = −kpm(t)P (t),
ṙi(t) = +kpm(t), 1 ≤ i ≤ P (t),

P (t) = P (0) + Y
(

∫ t

0

kbz(s)ds
)

,

z(t) = z(0) +m(0)−m(t) =

P (t)
∑

i=1

ri(t).

(29)

In such model, each polymer grows at speed kpm(t) according to an ordinary differential equation, and
new polymers appears at rate kbz(t), given by a poisson process, where z(t) is the total mass of polymers.
Due to the linearity assumed for the fragmentation rate, and the size-independent polymerization rate,
individual mass of polymers are not relevant, and the system can be reduced to the three variable
m(t), z(t), P (t), as in a deterministic framework (see [33]).

Assuming further a faster fragmentation process than elongation process,

knb = nkb,
knp (t) = kp/n,
pn(t) = P (t)/n,

(30)

the system (29) converges as n → ∞ (again by a standard limit theorem) to







ṁ(t) = −kpm(t)p(t),
ż(t) = +kpm(t)p(t),
ṗ(t) = +kbz(t).

(31)

To obtain such deterministic model, the fragmentation rate has been assumed large so that a large
number of polymers are created. Upon renormalization, the number of polymers is now represented by a
continuous variable. Finally, a Central Limit theorem gives us the following approximation for the total
mass of growing polymers

ẑn = z(t) +
1√
n
ξ(t), (32)

where ξ(t) = limn→∞
√
n(z(t)−zn(t)), ρ(t) = limn→∞

√
n(p(t)−pn(t)) are solution of the linear stochastic

differential equation















ξ(t) = −kp

∫ t

0

p(s)ξ(s)ds+ kp

∫ t

0

(z(0) +m(0)− z(s))ρ(s)ds,

ρ(t) = kb

∫ t

0

ξ(s)ds+W (

∫ t

0

kbz(s)ds)

(33)

where W is a standard Wiener process.
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Figure Legends
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Figure 1. Schematic view of the dynamical model of Prion nucleation-polymerization with
misfolding. A Spontaneous Misfoling reaction, that consists of reversible first-order kinetic reaction by
which monomer changes conformation, at rate respectively γ and γ∗. In the reduced model, we consider
that a fast equilibrium between normal and misfolded monomer is reached instantaneously (γ, γ∗ → ∞).
B Nucleation steps (with N = 5). All the steps are composed of reversible lengthening/shortening of a
single monomer. The forward aggregation reaction is thus a second-order reaction (with kinetic rate k+,
independent of the size of the aggregate), and the backward disaggregation reaction is a first-order
reaction (with kinetic rate k−, independent of the size of the aggregate). The first nucleation event
refers to the first nucleus formed, that is an aggregate of size N . C Polymerization steps. For
aggregates of size larger than N , the aggregation process is composed of irreversible addition of a single
monomer, as a second-order kinetic reaction (with kinetic rate kp, independent of the size of the
aggregate). D Polymerization/fragmentation steps. As the polymer becomes larger and larger, the
polymerization process still occur and the fragmentation becomes more likely. The fragmentation rate is
proportional to the size of the polymer, in a first-order kinetic reaction (with kinetic rate kb). The two
parts have equal probability to be of a size between one and the size of the initial polymer minus one.
When it gives birth to an oligomer (size less than N) this last one is supposed to break into small
monomers immediately due to the instability of the oligomer).
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Figure 2. One stochastic simulation of the full stochastic discrete model, and definition of
the lag time. One simulation of the stochastic model, with the numbers of normal and misfolded
protein, the mass of oligomers (aggregates of size less than N) and the mass of polymers (aggregates of
size larger than N). We use here aggregate variables to improve visualization. The lag time is defined
as the waiting time for the formation of the first nucleus . We used M = 1000, γ∗/γ = 10, q = 1000,
N = 7. The time (in log scale) has been rescaled by τ = k+t.
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Figure 3. Statistics of the nucleation time in the stochastic nucleation model. Left Panel:
Mean nucleation time as a function of the initial quantity of monomers. The solid black symbol show
the statistical mean obtained through numerical result (for 10000 runs). The red dashed line is given by
the Weibull approximation, the green dashed line is given by the exponential approximation, and the
solid black line by the linear metastable approximation. Parameter are q = 100, and N = 10 as
indicated on the figure. Right Panel: Nucleation distribution time, for N = 10, q = 10 and from top
to down, M = 200, 1000, 10000. The histogram show the numerical result (for 10000 runs), while the
solid black line is given by the linear metastable approximation.
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Figure 4. Mean nucleation time in the stochastic nucleation model. Mean nucleation time as
a function of the initial quantity of monomer. The solid color symbol show the statistical mean
obtained through numerical result (for 10000 runs), while the solid color line are given by the linear
metastable approximation. Each color corresponds to a nucleus size of N ∈ [4, 20], as indicated on the
legend. Parameter q = 100.
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Figure 5. Metastable trajectories in the stochastic nucleation model. M = 30000, q = 1,
N = 10. Each solid color line represents the time evolution of the number of i-mer, as indicated on the
legend. Left Panel: Two different trajectories are shown. In the first, a nucleus is formed at time
∼ 10−4, and in the second one at time ∼ 10−1. Right Panel: Illustration of the metastable linear
approximation. The solid color lines, superimposed on several simulation trajectories, are the result of
the linear metastable approximation: initial values are given by the metastable values p∗i and the
numbers of aggregates evolves following the linear model.
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Figure 6. Simulations of the nucleation-polymerization model in the unfavourable limit
q � M . The solid blue line show the Mean and variance evolution of the mass of polymer, given by the
hybrid approximation calculated in the results section 1.4.1. Green lines show several simulation
trajectories of the nucleation-polymerization model, with M = 100 (left panel) and M = 1000 (right
panel). Trajectories have been shifted to coincide at their tenth percent value.
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Figure 7. Simulations of the nucleation-polymerization model in the nucleation dominant
limit M � q. Parameters are M = 1000, q = 10, N = 10. Left Panel: Several spontaneous
polymerization simulations are shown. We observe that oligomers are created in large quantity before
nucleation occurs. The nucleation time is highly variable from one simulation to another, but
polymerization speed is similar from one simulation to another and governed by oligomer
disappearance. textbfMiddle Panel: Several polymers mass time evolution are shown, shifted to
coincide at their tenth percent values. Different values of the polymerization rate Kp are used. This
parameter have little effect if larger to a given values (104 here). Right Panel: Several polymers mass
time evolution are shown, shifted to coincide at their tenth percent values. Different values of the
fragmentation rate Kb are used. This parameter have little effect on polymerization speed.
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Figure 8. Experimental data of nucleation time statistics from spontaneous prion
polymerization experiments, extracted from [20]. In the left panel A, each color (respectively
blue, green, red) symbol represent the nucleation time in a single spontaneous prion polymerization
experiment, for a given initial prion protein PrP c concentration (respectively 0.4, 0.8 and 1.2 mg/L).
Square symbol represent the mean nucleation time for a given initial prion protein concentration over
the repeated experiments, and the vertical line represents the normalized variance. The dashed line is
obtained by a linear fit of the means as a function of initial concentration (in log scale). The slope is
−0.13 hours−1.mg−1.L. The correlation coefficient between the nucleation time and the initial
concentration is −0.08, with a p-value of 0.49. In the right panel B, the same experimental data are
represented as histograms. From left to right, initial prion protein PrP c concentrations are respectively
0.4, 0.8 and 1.2 mg/L. The histograms are constructed based on the points of the left panel, with
respectively 29, 24 and 19 experiments.
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Tables

Table 1. Definitions of variables and parameters in the full stochastic
nucleation-polymerization model.

Symbol Definition

MI Number of inactive native monomer

MA Number of active misfolded monomer

M Total initial monomer quantity

Pi Number of polymer of size i ≥ 2

N Nucleus size

γ Folding rate

γ∗ Unfolding rate

c0 = γ∗

γ Equilibrium constant between monomers

k+ Elongation rate in nucleation steps

k− Dissociation rate in nucleation steps

q = k−

k+ Equilibrium constant in nucleation steps

kp Elongation rate in polymerization steps

kb Fragmentation rate in polymerization steps

q0 Normalized constant q(1 + c0)

Kb Normalized constant kb

k+ (1 + c0)

Kp Normalized constant
kp

k+ (1 + c0)

We sum up in this table the variable and parameters involved in the full stochastic discrete model of
nucleation-polymerization. One variable is used for the number of each species: MI , MA and Pi for
every i ≥ 2. For each kinetic reaction described in the model, we use a single kinetic rate constant
(mass-action law): γ, γ∗, k+, k−, kp and kb. The other parameters are the nucleus size N at which the
reaction scheme changes, and the initial condition given the total number of monomers M . Equilibrium
constant are denoted by c0 and q. The remaining constant q0, Kb and Kp are normalized constant as
indicated in the table. See also section 1.1 for details.
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Table 2. Propensity and state-transition of each reaction in the full stochastic
nucleation-polymerization model.

Reaction State transition Propensity

Folding reaction MI → MI − 1,MA → MA + 1 γMI

Unfolding reaction MI → MI + 1,MA → MA − 1 γ∗MA

Dimer formation MA → MA − 2, P2 → P2 + 1 k+MA(MA − 1)/2

i-mer formation (N ≥ i ≥ 3) MA → MA − 1, Pi−1 → Pi−1 − 1, Pi → Pi + 1 k+MAPi−1

i-mer destruction (N − 1 ≥ i ≥ 2) MA → MA + 1, Pi−1 → Pi−1 + 1, Pi → Pi − 1 k−Pi

Polymerization (i ≥ N + 1) MA → MA − 1, Pi−1 → Pi−1 − 1, Pi → Pi + 1 kpMAPi−1

Fragmentation (i ≥ N , j < i ) Pi → Pi − 1, Pj → Pj + 1, Pi−j → Pi−j + 1 2kbPi

We sum up in this table the propensity and state-transition of each reaction involved in the full
stochastic discrete nucleation-polymerization model (see also Figure 1). The state-transition of each
reaction is given by the stoichiometry of the biochemical reaction, and the propensity is given by
mass-action law, with a given kinetic rate constant. This uniquely defines a time-continuous Markov
chain on a discrete state-space. See section 1.1 for details.
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Table 3. Propensity and state-transition of each reaction in the reduced stochastic model
with fast misfolding process (conditions (H1)) and rescaled parameters.

Reaction State transition propensity

Dimer formation MF → MF − 2, P2 → P2 + 1 1
2(1+c0)

MF (MF − 1)

i-mer formation (N ≥ i ≥ 3) MF → MF − 1, Pi−1 → Pi−1 − 1, Pi → Pi+1 + 1 MFPi−1

i-mer destruction (N − 1 ≥ i ≥ 2) MF → MF + 1, Pi−1 → Pi−1 + 1, Pi → Pi − 1 q0Pi

Polymerization (i ≥ N + 1) MF → MF − 1, Pi−1 → Pi−1 − 1, Pi → Pi + 1 KpMFPi−1

Fragmentation (i ≥ N , j < i ) Pi → Pi − 1, Pj → Pj + 1, Pi−j → Pi−j + 1 2KbPi

We sum up in this table the propensity and state-transition of each reaction involved in the reduced
stochastic model with fast misfolding process (conditions (H1)) and rescaled parameters. The
state-transition of each reaction is given by the stoichiometry of the biochemical reaction, and the
propensity is given by mass-action law, with a proper time renormalization. This uniquely defines a
time-continuous Markov chain on a discrete state-space. See section 1.2 for details.
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Table 4. Analytical approximation of the nucleation time.

Parameter conditions Distribution Mean

q � M Exponential < MFPn−1 > (t → ∞) ∼ 2qN−2

MN

M � q, p∗N � 1 Weibull (2(N−1)!)1/(N−1)

MN/(N−1)

M � q, p∗N � 1 Bimodal nearly independent of M

In this table, we sum up the different analytical approximations of the nucleation time, for the full
stochastic discrete model of nucleation. There are three different approximations, for the unfavourable
case and the favourable case with small or large nucleus size. In the last bimodal case, we can obtain an
analytical formula which has not been reported here as no close-form is available (see also Figure 3 and
4). See text in subsection 1.3 for more details.
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Table 5. Normalized metastable values c∗i = p∗i /M for the nucleation model in the
favourable case M � q.

size value size value

c∗2 0.1145 c∗9 9.403910−5

c∗3 0.1104 c∗10 1.646310−5

c∗4 0.0618 c∗11 2.591910−6

c∗5 0.0250 c∗12 3.707610−7

c∗6 0.0080 c∗13 4.859610−8

c∗7 0.0021 c∗14 5.878110−9

c∗8 4.768810−4 c∗15 6.600910−10

In this table, we compute the numerical values of the normalized metastable values c∗i = p∗i /M for the
nucleation model in the favourable case M � q. Such values represent the level that each variable reach
during the metastable period after the pure-aggregation period (see also Figure 5). See text in
subsection 1.3 and 3.1 for more details


