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Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of

activation has profoundly evolved over the past years. The way drugs targeting this

family of receptors are discovered and used has also changed. Ligands appear to

bind a growing number of GPCRs in a competitive or allosteric manner to elicit

balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting

selective signaling pathway(s) compared to the reference ligand). These novel concepts

and developments transform our understanding of the follicle-stimulating hormone

(FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated

in the future. The FSHR is expressed in somatic cells of the gonads and plays a

major role in reproduction. When compared to classical GPCRs, the FSHR exhibits

intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that

binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once

activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G

protein-coupled receptor kinases and β-arrestins are also recruited to this receptor and

account for its desensitization, trafficking, and intracellular signaling. Different classes of

pharmacological tools capable of biasing FSHR signaling have been reported and open

promising prospects both in basic research and for therapeutic applications. Here we

provide an updated review of the most salient peculiarities of FSHR signaling and its

selective modulation.
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INTRODUCTION

Follicle stimulating hormone (FSH) plays a crucial role in the control of male and female
reproduction. FSH is a heterodimeric glycoprotein consisting of an α-subunit non-covalently
associated with a β-subunit. The α-subunit is shared with luteinizing hormone (LH), chorionic
gonadotropin (CG) and thyroid-stimulating hormone (TSH), whereas the β chain is specific of
each glycoprotein hormone (1). FSH is synthesized and secreted by the pituitary and binds to a
plasma membrane receptor (FSHR) that belongs to the class A of the G protein-coupled receptor
(GPCR) superfamily. The FSHR displays a high degree of tissue specificity as it is expressed in
Sertoli and granulosa cells located in the male and female gonads, respectively (2). FSH is required
for normal growth and maturation of ovarian follicles in women and for normal spermatogenesis
in men (3). Female mice with FSHβ or FSHR gene knockout present an incomplete follicle
development leading to infertility, whereas males display oligozoospermia and subfertility (4, 5).
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Consistently, women expressing non-functional variants of the
FSHR are infertile while men are oligozoospermic, yet fertile
(6). To date, only native forms of FSH, either purified from
urine or by using recombinant technology, are being used in
reproductive medicine with no other pharmacological agents
being currently available in clinic (7–9). Novel classes of FSHR
agonists with varying pharmacological profiles could potentially
help improving the overall efficiency of assisted reproductive
technology. On the other hand, FSHR antagonists could
represent an avenue for non-steroidal approach to contraception
(10). This paper offers an updated overview of the way FSHR
signals and of how selective modulation of its signaling can
be achieved.

STRUCTURE OF THE FSHR

For the vast majority of GPCRs, the orthosteric site (i.e., the
region that binds the natural ligand), is located in a cavity
defined by the transmembrane helices. This is not the case
for the FSHR, which binds its natural ligand, FSH, through
its characteristic large horse-shoe-shaped extracellular domain
(ECD). Consequently, the orthosteric site spans over the nine
leucine rich repeats (LRRs) of the ECD (Figure 1). The first
crystal structure of FSH bound to part of the ECD came out in
2005 and led to a detailed understanding of the molecular basis
leading to the specificity of hormone binding (11). The ECD of
the receptor contains 12 LRRs linked to three disulfide bonds
and two unstructured sequence motifs that define the hinge
region connecting the ECD to transmembrane domains (TMD).
However, the recombinant protein used for crystallization did
not include amino acid residues in the hinge region. Therefore,
the receptor activation mechanism remained poorly understood,
until recently, when another crystal structure including the
hinge region was reported (12). Interestingly, it revealed a two-
step activation mechanism of the receptor: interaction of FSH
with LRR1-9 reshapes hormone conformation, so that exposed
residues located at the interface of the hormone α- and β-subunits
form a binding pocket for sulfated Tyr335 of the hinge region,
resulting in a conformational change of the latter (13, 14). This
two-step interaction process not only stabilizes the FSH/FSHR
interaction but also relieves the tethered inverse agonistic activity
previously mapped within the hinge region (15). Since no
structural data of gonadotropin receptor TMD are currently
available, homology modeling with other GPCRs is necessary.
The structure of human neuropeptide Y1 receptor that recently
came out (PDB:5BZQ) displays the highest identity with FSHR
(25%) and LHR (24%) TM domains. Prior to that, gonadotropin
receptor TM domains have been successfully modeled using
adenosine receptor crystal structure (16). This revealed the
existence of two adjacent pockets that could accommodate small
ligands. These sites have been assigned P1 and P2 (major and
minor site, respectively). The P1 site is located between TMs
III, IV, V, and VI, and P2 between TMs I, II, III, and VII
(Figure 1A) (17). These putative TM domain allosteric sites
have been confirmed in studies utilizing chimeric receptors and

mutagenesis. Interestingly, it was found that a FSHR small-
molecule agonist at high concentration specifically displaced the
binding of radiolabelled adenosine A3 receptor (A3R) agonist
on A3R (18). This suggests a similarity between glycoprotein
receptor and A3R in the TMD region for the allosteric binding
pocket (19). As suggested from studies on other GPCRs, allosteric
sites distinct from P1 and P2 may also exist and affect FSHR
activity (20).

FSHR COUPLING TO G PROTEINS

By analogy with other GPCRs, it is reasonable to posit that
FSH binding leads to conformational rearrangements within
the transmembrane regions, thereby causing the recruitment
and coupling of signal transducers (G proteins, β-arrestins) that
ultimately trigger a complex intracellular signaling network (21,
22). The primary transduction effector described for the FSHR
is Gαs that triggers the canonical adenylyl cyclase/cAMP/protein
kinase A (PKA) signaling cascade. Once activated, PKA
phosphorylates many proteins such as transcription factors of
the cAMP response element-binding protein (CREB) family (23–
31). cAMP action is also mediated by the Exchange Proteins
directly Activated by cAMP (EPACs) (32–34). Upon cAMP
binding, EPAC1/2 stimulate Ras-related protein (RAP1/2), small
GTPases that lead to protein kinase B phosphorylation (PKB)
(35, 36). In addition, the FSHR has been reported to interact
with Gαi and Gαq. Gαi inhibits adenylate cyclase, blocking
Gαs-induced cAMP production (37). The stimulation of Gαq
requires in vitro stimulation with high FSH concentrations
(>50 nM) (22, 38–40). This coupling leads to the production
of inositol 1,4,5 triphosphate (IP3) and diacylglycerol (DAG),
increased intracellular calcium concentration and activation
of protein kinase C (PKC). Pleiotropic coupling of FSHR to
various heterotrimeric proteins suggests the co-existence of
multiple active conformations of the receptor in the plasma
membrane (41, 42).

FSHR COUPLING TO β-ARRESTIN

Similarly to most GPCRs, the FSHR interacts with β-arrestins,
scaffolding proteins that control receptor desensitization,
internalization and recycling (24, 43–46). Classically, β-arrestins
are recruited following (i) receptor activation and (ii) receptor
phosphorylation by G protein-coupled receptor kinases (GRK).
Due to steric hindrance, FSHR coupling to Gαs is impaired
once β-arrestins are recruited (47, 48). In a model of rat
primary Sertoli cells that express the FSHR endogenously,
it has been demonstrated that agonist-induced cAMP levels
decreased upon β-arrestin overexpression, consistently with
its role in FSHR desensitization (49). In heterologous cells, the
carboxyl tail of FSHR has been reported to be phosphorylated
on several serine and threonine residues (43). In addition to
these classical functions, it has become increasingly clear that
β-arrestins can also initiate specific, G protein-independent
signaling events leading to the activation of many pathways,
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FIGURE 1 | Orthosteric and allosteric sites in the FSHR. (A) Cartoon and surface view of the transmembrane regions of the FSHR showing P1 and P2 allosteric sites.

(B) Complex between the ectodomain of the FSHR (gray) and FSH (violet: alpha chain, pink: beta chain). The colored spheres represent sulphated Tyr355. (C)

Residues involved in FSH binding are shown in red. (D) Close-up on the interaction between sulphated Tyr335 (colored spheres) and FSH.

amongst which the ERK (Extracellular signal-Regulated Kinase)
MAP (Mitogen-Activated Protein) kinase pathway has been
the most studied (50). Of note, ERK activation kinetics at the
FSHR has been reported to vary in heterologous cells as a
function of the upstream transduction mechanism involved:
β-arrestin-mediated ERK activation is delayed but more
sustained compared to Gαs-dependent ERK activation, which
occurs early but is transient (43). Consistent with the concept of
“phosphorylation barcode” which links particular GRK-mediated
phosphorylation signatures at the receptor level to the activation
of distinct β-arrestin-dependent functions (51, 52), a relationship
has been found between the subtype of GRK involved in
FSHR phosphorylation and the nature of β-arrestin-mediated
actions. In particular, β-arrestins recruited to GRK2 or GRK3-
phosphorylated FSHR favor receptor desensitization whereas
GRK5 or GRK6-mediated phosphorylation of FSHR were
involved in β-arrestin-dependent ERK activation (43, 53, 54).
Recently, phosphorylation of Tyrosine383 in β-arrestin 2 has
proved to be crucial for β-arrestin-mediated ERK activation by
the FSHR and other GPCRs. More precisely, ligand-induced
receptor activation provokes MEK (Mitogen-activated protein
kinase kinase)-mediated phosphorylation of Tyr383, necessary

for β-arrestin 2-mediated ERK recruitment and activation
(55). β-arrestins also play a role in FSHR-induced translation,
mediated by a β-arrestin/p70S6K/ribosomal S6 complex that
assembles in heterologous and in primary Sertoli cells. Upon
FSH stimulation, activation of G protein-dependent signaling
enhances p70S6K activity within the β-arrestin/p70S6K/rpS6
preassembled complex, leading to the fast and robust translation
of 5′ oligopyrimidine track (5′TOP) mRNA (56). In addition,
the balance between FSHR-mediated proliferation vs apoptosis
seems to be regulated by β-arrestins. In hGL5 human granulosa
cells, silencing of β-arrestins leads to an increase in cAMP/PKA
and a decrease in β-arrestin-mediated proliferative pathway,
resulting in cell death (57). Evidence reported for other GPCRs
demonstrated that the internalized receptor can form molecular
complexes involving simultaneous interactions with Gαs to the
core domain and β-arrestin to the C-tail of the receptor (58).
These complexes, named “megaplexes,” are able to signal from
the endosome by inducing a second wave of cAMP (58, 59).
Based on structural evidence, a two-step mechanism for β-
arrestin recruitment has been proposed (60). First, β-arrestins
are recruited to the phosphorylated C-tail, resulting in a so-called
“partially engaged” complex which the authors reported to be
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sufficient for ERK signaling and internalization. Interestingly,
this conformation allows the receptor to simultaneously couple
to G protein α subunit. Second, a conformational rearrangement
of β-arrestins allows them to interact with the receptor core
domain, forming a “fully engaged complex” incompatible with
further G protein coupling (58, 60–62). More recently, a separate
study uncovered another mechanism of β-arrestin activation that
the authors called “catalytic activation.” Upon ligand-induced
recruitment of inactivated β-arrestin to the receptor core domain,
a conformational change in β-arrestin occurs that exposes a
PIP2-bindingmotif and allows β-arrestin to bindmembrane lipid
rafts independently of the receptor. Interestingly, the authors
noticed an accumulation of active β-arrestin in clathrin-coated
endocytic structures in the absence of the receptor, revealing
the existence of a receptor C-tail-independent β-arrestin
activation mechanism (63). No evidence currently exist that the
aforementioned mechanisms also apply to the FSHR. Further
studies will be necessary to clarify the molecular mechanisms
involved in β-arrestin recruitment and activation at the FSHR
and to determine their possible peculiarities.

FSHR INTERACTION WITH
OTHER PARTNERS

Beside G proteins, GRKs and β-arrestins, the signal is also
transduced at the FSHR by other direct binding partners (44).
For example, adaptor protein, phosphotyrosine interacting with
the Adapter protein with PH domain, PTB domain, and leucine
zipper 1 (APPL1) binds intracellular loop 1 of the FSHR (64).
This protein has lately retained the greatest attention in the
gonadotropin community for two main reasons. The first one
is that this adapter protein links the FSHR directly to inositide
phosphate metabolism and Ca2+ release in granulosa cells (65),
hence it induces cAMP-independent signaling; the second is
that, like β-arrestins, APPL1 recruitment plays a role in the
subcellular routing of FSHR. This discovery had been heralded by
the previously identified interaction between GAIP-interacting
protein C-tail (GIPC) adaptor and the FSHR (or the LHR),
presumably requiring the carboxyterminal end of the receptor.
Interestingly, GIPC reroutes the internalized FSHR from Early
Endosomes (EE) to recycling Very Early Endosomes (VEE), and
by these means, enables sustained ERK phosphorylation (66).
Likewise, in HEK293 cells, APPL1 has been shown to convey
internalized FSHR, as well as LHR, to VEE for recycling, and
PKA-dependent phosphorylation of APPL1 leads to endosomal
cAMP signaling (67). These two sets of observations on ERK
MAP kinases and cAMP suggest that spatially restricted FSH
signaling may be generalized to several of its components. In
addition, 14-3-3τ has been shown to interact directly with
the second intracellular loop of the receptor FSHR (68, 69).
The 14-3-3τ interaction site on the FSHR encompasses the
ERW motif involved in G protein association (70), that is
consistent with the observation that 14-3-3τ overexpression in
HEK293 cells reduces FSH-induced cAMP response (68). The co-
occurrence of these direct binding partners as well as G protein,
GRK and β-arrestins, raises fundamental questions about their

sequence/dynamics of interaction on a single FSHR or about
the possibility that FSHR oligomers might cluster transduction
assembly of variable composition at the plasma membrane and
in intracellular compartments.

TRAFFICKING AND
ENDOSOMAL SIGNALING

Compartmentalization of signaling is now viewed as an
important feature for many signaling proteins and plays
key roles in cellular responses. This is particularly the case
for membrane receptors such as GPCRs since, in the past
years, several examples have revealed connections between
membrane compartmentalization, endocytic trafficking and
signaling patterns. Originally thought to function solely at
the plasma membrane, the multifunctional protein β-arrestin
assemble signaling molecules (e.g., MAPK, Src, etc) that direct
GPCRs to the endocytic pathway and regulate their post-
endocytic fate, as mentioned above. For some GPCRs forming
a stable interaction with β-arrestin, β-arrestin/receptor/signaling
molecule complexes are found in endosomes, allowing prolonged
signaling from these intracellular structures (71–73). The nature
of the β-arrestin binding motifs, in particular serine/threonine
clusters in the C-tail of the receptor, regulates the stability of
this interaction. GPCRs that display high affinity binding to
β-arrestin, are classified as class B (74, 75). In the FSHR, a
cluster of 5 serines/threonines is involved in both internalization
and binding of β-arrestin to the receptor and is consistent
with the class B definition. Such interaction was confirmed by
bioluminescence energy transfer experiments (BRET) and co-
immunoprecipitation experiments, however no imaging data
have confirmed the existence of a functional complex in
endosomes (24, 43). In addition, it is unclear whether β-arrestin-
mediated ERK signaling by FSHR requires β-arrestin localization
in endosomes. Recently, both the FSHR and LHR were reported
to predominantly localize to an atypical endosome denoted
as VEE (Figure 2). Alteration of this endosomal trafficking by
blocking internalization inhibits activation of ERK through the
LHR, suggesting that VEE are a location for signaling (66). These
particular endosomes are upstream of the classical endosomes
and are devoid of typical early endosomes markers such as the
Rab5 GTPase or the phosphatidylinositol-3-phosphate (PI(3)P)
or the PI(3)P-bound EEA1 proteins. Morphologically, they are
smaller (<400 nm) than conventional sorting EE but their
exact nature remains to be defined. Interestingly, gonadotropin
receptor localization in VEE requires an intact receptor C-
tail and the GIPC PDZ-domain protein (66). PDZ motifs are
found in several GPCRs to regulate their spatial localization or
trafficking (76). The PDZ motif of the LHR directly binds GIPC
that sequesters the receptor into VEE following agonist-induced
internalization. In fact, in cells depleted in GIPC or expressing
LHR lacking the distal PDZ motif in its C-tail, the receptors
are rerouted and accumulated into the classical EE where they
fail to recycle back to the plasma membrane. In addition, they
were not able to signal to ERKMAP kinases (66), suggesting that
endosomal ERK activity occurs from this specific compartment.
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It is worth noting that the FSHR does not display a known
PDZ ligand in its C-tail and the exact mechanism on how GIPC
controls FSHR fate remains to be determined. However, APPL1,
a known FSHR binding partner, localizes to a subset of VEE and
displays a PDZ motif previously shown to interact with GIPC
(64, 65, 77). A possible scenario would be that FSHR, via its
interaction with APPL1, connects with GIPC and is targeted to
VEE where it activates ERK (78). Earlier work supports the idea
that endosomal APPL1 defines a signaling platform upstream
of the Rab5/PI(3)P endosomes. Disruption of EE leads to the
accumulation of the EGFR Tyrosine kinase receptor in APPL1
vesicles, leading to a sustained activation of ERK from this
compartment (79, 80). As shown for the LHR, the endosomal
cAMP/PKA dependent phosphorylation of APPL1 on Ser410 is
necessary for the recycling of the receptor (67).

This concept of endosomal signaling compartmentalization
was further supported by the findings that GPCR can induce
a second phase of G protein activation following their
internalization (81–83). This allowed the advent of a new
paradigm where some GPCRs do not only transduce and
activate G proteins from the plasma membrane but also from
endocytic compartments (the so-called “megaplex” mentioned
above). Interestingly, the two other members of the glycoprotein
hormone receptor family, TSHR and LHR, were both shown
to transduce via Gαs and promote sustained cAMP production
from endocytic compartments (59, 67, 84, 85). While the TSHR
acts from EE and trans-Golgi compartments, the LHR signaling
is restricted to the VEE. It has yet to be shown whether the FSHR
also activates G proteins from the VEE but the fact that it shares
several features with GPCRs known to signal from endosomes,
including LHR, V2R or PTHR, supports this possibility. FSHR
trafficking mimics the LHR as discussed above and it displays
a phosphorylation code similar to those found in the C-tail of
V2R and PTHR. More precisely, the formation of a “megaplex”
has been shown to induce cAMP from the EE in response
to PTHR activation (86, 87). That the FSHR could signal in
endocytic compartments through G proteins in a similar way as
the PTHR, but from VEE, is conceivable, but further studies are
needed to demonstrate this possibility. Despite the identification
of structural determinants in the FSHR C-tail that regulate
its trafficking (88), very little is known about the mechanisms
involved in the post-endocytic trafficking of this receptor.

BIASED SIGNALING AND
ITS QUANTIFICATION

The action of a given ligand on its cognate receptor has classically
been characterized by its effect on downstream effectors (second
messengers). Compared to the reference ligand (generally, the
physiological ligand), a pharmacological agent can be either
an agonist (it produces a biological response similar to that
of the reference ligand), an antagonist (it blocks the biological
response elicited by the reference ligand) or an inverse agonist (it
produces an opposite biological response that leads to a decrease
in the receptor basal activity). Importantly, it has long been
thought that these characteristics hold irrespectively of effector

measured (89). However, some ligands did not match with one
of these categories, because they displayed both agonist and
antagonist (or inverse agonist) activities at the same receptor,
depending on the downstream pathway measured. For instance,
carvedilol, a clinically used β-blocker, has a clear inverse agonist
profile on Gαs-dependent activity at the β2 adrenergic receptor
while being a weak partial agonist for β-arrestin-dependent ERK
activation (90). To deal with these discrepancies, the concept
of biased signaling or functional selectivity, recently came to
the fore (89, 91, 92). According to this concept, a ligand is
biased when it triggers imbalanced responses, compared to a
reference ligand acting on the same receptor (classically the
endogenous ligand). Importantly, a biased ligand can selectively
activate only a subset of the biological responses or activate all
of them but with different efficacies compared to the reference
ligand. As these ideas hold profound implications and potential
for the design of new therapeutics, biased signaling is a very
active area of research in pharmacology (93, 94). Over the last
decade, biased signaling has been evidenced in many different
receptors, including gonadotropin receptors, as will be discussed
in a forthcoming section. By analogy with a ligand bias, the
notion of receptor bias has been proposed (95). Two receptors,
diverging only by a mutation or a polymorphism, once activated
by the same ligand may induce two signaling pathways with
different relative efficacies. Importantly, biased signaling has
been extended to allosteric ligands, which can modulate not
only the efficacy of a given ligand-induced receptor signal but
also select and bias the activation of the receptor toward a
subset of the biological responses (93). Ligand bias and receptor
bias must be set apart from system bias or observational bias
(95). System bias refers to bias that are due to the particular
biological system used (some transducer molecules, such as G
proteins, may be expressed differentially in different cell types
for instance). Observational bias refers to the modification or
amplification of the signals inherent to the specific assays used
for the measurements. Besides being supported by numerous
experimental evidences, biased signaling is consistent with the
receptor conformation theory, which views a receptor population
as an ensemble of conformations that evolve dynamically,
according to some energy landscape and subjected to external
perturbations (96). In such theory, ligand-induced receptor
activation is concomitant with a stabilization of some receptor
conformations and a modification of the receptor conformation
energy landscape, resulting from the interaction of the ligand
with its receptor. Several studies have thus shown that receptor
conformational equilibriummodels, such as the extended ternary
complex model, can satisfactorily explain ligand bias (97, 98).
Several groups have attempted to address the problem of bias
quantification. Considering a given receptor and two signaling
pathways (A and B), the objective is to be able to classify
ligand bias, as having for instance a low, a moderate or a high
bias toward pathway A vs pathway B, when compared to a
reference ligand. The most popular method to quantify ligand
bias uses dose-response data and the so-called operational model
(99, 100). The latter is widely used to perform regression on
dose-response data, which have in many cases a sigmoid shape.
The parameters of the operational model are derived from a
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FIGURE 2 | FSHR signaling and trafficking. Upon FSH binding, the FSHR mainly activates Gαs protein, leading to conversion of ATP to cAMP by adenylyl cyclases

and activation of intracellular effector kinases, including PKA. After stimulation, GRK phosphorylates and desensitizes the FSHR. Phosphorylated FSHR recruits

β-arrestin, which in turn induces its own signaling, including ERK activation, as well as receptor internalization in the endosomes. FSHR potentially activates G

protein-dependent and -independent signaling from the endosomal compartment, before quickly recycling back to the plasma membrane. Effector proteins drive the

cellular responses, including gene transcription, cell proliferation and differentiation. APPL1, Adaptor protein, phosphotyrosine interacting with PH domain and leucine

zipper 1; CREB, cAMP response element binding protein; ERK, extracellular signal-regulated kinase; FSH, Follicle-stimulating hormone; GRK, G protein-coupled

receptor kinase; PKA, protein Kinase A.

simple chemical reaction scheme that takes into account ligand
receptor association/dissociation reactions and that links the
ligand-receptor concentration to the biological response thanks
to a logistic function (similar to enzymatic reaction models).
The usefulness of this model for the quantification of ligand
bias is associated with the interpretation of its parameters. In
particular, the two main parameters of the operational model
are the ligand-receptor dissociation constant Ka and the intrinsic
efficacy τ (which describes the ability of the ligand-receptor
association to be converted into a response). With these two
coefficients, a single transduction coefficient, given by log(τ /Ka),
has been proposed to characterize the agonism of a ligand for
a given signaling pathway (100). This coefficient can then be
compared between two pathways and between two ligands, to
ensure normalization. Hence

1log(τ/Ka) = log(τ/Ka)ligand A − log(τ/Ka)ligand B

quantifies the activation of a pathway by ligand A, compared to
ligand B. In addition,

11log(τ/Ka) = 1log(τ/Ka)pathway 1 − 1log(τ/Ka)pathway 2

evaluates the differences of activation between the two pathways.
Finally, the bias is defined as

bias = 1011log(τ/Ka)

This procedure for bias quantification, together with its statistical
significance, has been detailed as a step-by-step protocol using
Prism (v6.0; GraphPad Software) (101–103). Other logistic
regressions that lead to different quantifications and parameter
interpretations have been proposed and compared (104). A
notion of dose-dependent ligand bias, which may reveal subtle
nonlinear effects of the ligand, has also been defined using
logistic function (105). Overall, the statistical regression of dose-
response data (sigmoid curves) can be ambiguous and lead
to a misinterpretation of the results. Moreover, it has been
shown experimentally that different procedures may exhibit
discrepancies between each other, and may fail to detect ligand
bias or lead to false positives, probably due to the presence of
system or observational bias (104). A semi-quantitative method
to classify ligand bias that would bemore robust than quantitative
methods has been proposed, based on logistic regression (104).
However, the major concern of the operational approach to
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quantify ligand bias is that it disregards an important aspect
of signaling pathways, namely the temporal activation of the
different signaling processes (106). This has been revealed by the
relatively simple observation that the bias value, as calculated
with the operational model, could change as a function of
the kinetics of response (107). Actually, the apparent bias can
even be in an opposite direction for two different time points
when the biological responses are measured. While part of the
explanation of this phenomena resides in the different time
scales at stake within a signal transduction pathway (binding
kinetics, second messenger and effector kinetics), it also reveals
the whole complexity of a receptor trafficking system (108), that
can certainly not be condensed into a single number. Thus,
methodological developments such as dynamical versions of the
operational model and/or the extended ternary complex model
(109, 110) must be developed to address this complexity and
allow better characterization of the effect of a ligand on its
cognate receptor.

BIASED SIGNALING AT THE FSHR

To date, different classes of biases have been reported to elicit
selective modulation at the FSHR (Figure 3). Ligand bias can
be provoked by small molecule ligands, glycosylation variants of
FSH or by antibodies acting at FSH or FSHR. Receptor bias due
to mutations or single nucleotide polymorphisms (SNP) at the
FSHR have also been reported.

Small Molecule Ligands
Several classes of chemical compounds exhibiting the ability
to modulate FSHR-mediated signaling upon binding have been
identified to date. Readers interested in the chemical diversity
of currently known FSHR small molecules classes can refer
to Figure 2 of Anderson et al. in the same special issue of
Frontiers in Endocrinology (19). According to their mode of
action and effect on the receptor, they can be divided in
four classes: allosteric agonists, positive allosteric modulators
(PAMs), negative allosteric modulators (NAMs) and neutral
allosteric ligands (NALs) (111). While PAMs or NAMs need
the presence of FSH to detect the enhancement or the decrease
of FSHR activation, respectively, agonists have the capacity
to activate it on their own. Even though NALs do not
influence signaling, they can potentially prevent other allosteric
modulators from binding (112). Thiazolidinones, identified by
screening combinatorial chemical scaffolds, were the first class
of FSHR allosteric agonists to be reported (113). The allosteric
nature of thiazolidinone derivatives was confirmed thanks to
experiments involving FSHR/TSHR chimeras, which showed
that their binding site was localized in the TMD (114). A
nanomolar potent thiazolidinone FSHR agonist was reported
to trigger signaling pathways similar to FSH, both in vitro
and in vivo (115). Interestingly, some thiazolidinone analogs
demonstrated biased agonism by mobilizing the Gαi protein
instead of Gαs or both as observed for other thiazolidinone
analogs or FSH preparations (116). Besides, high throughput
screening on substituted benzamides allowed the identification
of a series of FSHR PAMs that showed improved selectivity

against LHR and TSHR. Interesting pharmacokinetic properties
were also described for two selected compounds (117). A
dihydropyridine compound, Org 24444-0, is another PAM,
which displayed a good selectivity toward FSHR and induced
cAMP production in presence of FSH (118). The compound
was also able to reproduce the effects of FSH on the follicle
phase maturation in mature female rats. Among the currently
known NAMs, tetrahydroquinolines constitute a good example
of biased signaling. It was indeed established that the compounds
inhibited FSHR-induced cAMP production, without inhibiting
FSH binding (119). Unfortunately, the tetrahydroquinolines
did not display any in vivo activity. Three other NAMs have
been characterized by Dias et al. (120, 121). The first one,
ADX61623, was reported to inhibit cAMP and progesterone but
not estradiol production in rat granulosa primary cells. Using
125I-hFSH, it was established that ADX61623 did not compete
with FSH, but rather increased FSH binding, suggesting that it
does not bind the extracellular domain of FSHR. When tested
in vivo, the compound was not able to decrease FSH-induced
preovulatory follicle development (120). Two similar compounds
were described later: ADX68692 and ADX68693. Both were
reported to inhibit cAMP and progesterone production in rat
granulosa primary cells, but while ADX68692 also affected
estradiol and decreased the number of oocytes recovered in
mature female rat, ADX68693 had no effect on estradiol, nor on
the number of retrieved oocytes (121). Interestingly, ADX68692
and ADX68693 were also reported to exert similar actions on the
LHR (122). The first FSHR competitive antagonist described in
scientific literature, suramin, was reported to inhibit testosterone
production and FSHR signaling, by competing with FSH binding
(123). Another non-competitive antagonist of human and rat
FSHR showing the same behavior was later identified (124).

Glycosylation Variants
Gonadotropins present natural heterogeneity in their glycan
moieties that contribute up to nearly 30% of the hormone’s mass
(125–128). The presence of glycans has important outcomes
on the in vivo half-life of the hormone because, by doubling
its diameter, it limits its glomerular filtration. FSH contains
two potential N-linked oligosaccharides on each subunit that
are sources of heterogeneities. Importantly, these glycan chains
are involved in FSH folding, assembly, stability, quality control,
secretion, transport as well as the biological activity and
potency (15, 129–138). The α chain is glycosylated at asparagine
52 (Asn52) and Asn78, while the FSH β subunit can be
glycosylated at Asn7 and Asn24. Partially glycosylated variants
that are missing either one or both of these oligosaccharides
on FSHβ have been reported in equine FSHβ, human FSHβ

(hFSH β), rhesus FSHβ and Japanese macaque FSHβ (139–142).
Glycosylation profile of each subunit plays a critical role in
the activity and clearance of FSH (131, 143, 144). Interestingly,
while FSHα subunit amino-acid sequences are identical to LH,
TSH and CG α-subunits, the N-glycan populations at Asn52
and Asn78 differ from those of the other hormones (145–
147). FSHβ subunit shares 34–40% of sequence homology
with the other human glycoprotein hormone β-subunits, yet
the main structural hallmarks (i.e., six disulfide bonds, cystine
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FIGURE 3 | Ligand bias at the FSHR. Balanced agonists or PAM at the FSHR induce both G protein and β-arrestin recruitment. FSH binding to the FSHR can be

prevented using small competitive ligands, antibodies directed against the binding pocket of the FSHR or directly against FSH. Biased signaling toward Gαi, Gαs, or

β-arrestin recruitment can result from glycosylation forms of FSH (fully glycosylated FSH24 vs partially glycosylated FSH21-18), antibody or small chemical compounds.

knot motif and seatbelt loop) are conserved (148, 149).
Interestingly, the abundance of the glycosylated variants in
FSHβ subunit appears to be physiologically regulated (141).
Although glycosylations are involved in the FSH bioactivity,
they are not directly interacting with the receptor binding
site (11, 12, 15, 150). Removal of the carbohydrate residue
at position 78 from α-subunit significantly increases receptor
binding affinity of human FSH. Likewise, carbohydrate at
position 52 of the α-subunit was found to be essential for
bioactivity since its removal resulted in significant decrease in
potency. Furthermore, β-subunit carbohydrates are essential for
FSHβ/FSHα heterodimerization (138, 151). In binding assays,

hypoglycosylated FSH (triglycosylated FSH21/18, missing either
Asn7 or Asn24-linked oligosaccharide on the β chain) was 9–26-
fold more active than fully glycosylated FSH (tetraglycosylated
FSH24) (139). Likewise, a deglycosylated FSH variant, which
possesses only α-subunit oligosaccharides, is significantly more
bioactive in vitro and more efficient in receptor binding than the
tetraglycosylated form of the hormone (141, 142, 152). However,
this hypoglycosylated FSH is not physiologically relevant because
subunit heterodimerization is extremely inefficient when both
FSHβ glycans are missing, precluding secretion of enough
active forms (151). In contrast, ovulated eggs and subsequent
in vitro embryo development was increased by hyperglycosylated
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FIGURE 4 | Mutation-induced receptor bias at the FSHR. Mutations can lead

to biased signal transduction at the FSHR upon exposure to fully glycosylated

FSH (FSH24). Green, Gs-biased mutants; purple, β-arrestin-biased mutant.

FSH (153). FSH variant abundance is tightly correlated with
fertility: FSH24 predominates in men and post-menopausal
women whereas FSH21/18 is more abundant in younger
females. This observation suggests that hypoglycosylated FSH
may play a preferential role in efficient stimulation of ovarian
follicle development (154). Noteworthy, FSH variants have been
reported to exhibit biased signaling: FSH21/18 is better to activate
the cAMP/PKA pathway and is 10-fold more potent in inducing
CYP19A1 and estrogen than fully glycosylated FSH24 (155). Bias
at the FSHR has also been reported with partially deglycosylated
eLH (eLHdg) preparation. β-arrestin depletion revealed that
eLHdg induced β-arrestin recruitment to the FSHR and activated
both ERK and PI3K pathways in a β-arrestin-dependent and
Gαs/cAMP-independent manner (156). Altogether, these data
suggest that FSH glycoforms may act as physiological bias (157).
A recent study revealing signaling bias between human LH and
hCG is consistent with this hypothesis (158).

Antibody
Particular antibodies have been shown to selectively modulate
FSHR activation, likely eliciting structural constraints and
stabilizing distinct conformations of FSH and/or its receptor (21).
Monoclonal antibodies against bovine FSHβ and anti-peptide
antibodies targeting ovine FSHβ both significantly enhanced
biological activity in mice (159, 160). Interestingly, in non-equine
species, equine CG (eCG) binds to both FSHR and LHR and
elicits their activation (161–164). Studies have evaluated the
impact on gonadotropin bioactivities of different eCG/anti-eCG
antibody complexes generated using individual sera from a large
number of eCG-treated goats. Interestingly, both inhibition and
hyperstimulation of LH and FSH bioactivity were recorded (165).
In a follow-up study, Wehbi et al. investigated the effects of
these complexes on FSH signaling in more details (166). Three

stimulatory complexes were tested, displaying modulatory effect
on cAMP production but all exhibited increased β-arrestin-
dependent ERK response, suggesting biased properties. Recently,
Ji et al. developed two anti-FSHβ monoclonal antibodies using
synthetic peptides located at the binding interface of FSHR
(167). Strikingly, this study demonstrated that blocking FSH
action using antibodies against FSHβ protects ovariectomized
mice against bone loss, by stimulating new bone formation
and reducing bone removal besides inhibiting fat accumulation.
Direct targeting of GPCR with antibody or antibody fragments
in order to modulate their signaling is increasingly viewed
as a viable approach that even led to therapeutic applications
in the last few years (168). The FSHR has been targeted
by antibodies in different studies. Recombinant filamentous
phages displaying at their surface three overlapping N-terminal
decapeptides of the FSHR, A18–27, B25–34, and C29–38 peptides
were used for immunizing ewes and female mice. When tested in
vitro, antiA and antiB immunoglobulins behaved as antagonists
for FSH binding and for cAMP production, whereas antiC
immunoglobulins did not compete for hormone binding but
displayed agonist activity on FSHR-mediated cAMP response
(169). Studies using polyclonal and monoclonal antibodies or
scFv fragments specific of the hinge region of FSHR, LHR,
or TSHR, while not affecting hormone binding, all revealed
agonistic activities, unequivocally establishing the role of the
hinge region in the activation of these receptors (170–172).
More recently, recombinant nanobodies capable of specifically
recognizing FSHR and of inhibiting cAMP accumulation have
been identified (173). Even though the biased nature of the above-
discussed anti-FSHR antibodies have not been assessed in the
original studies, it is tempting to speculate that antibodies and
antibody fragments hold a lot of promises as research tools and
as therapeutic agents capable of eliciting functional selectivity at
the FSHR.

Single Nucleotide Polymorphisms
and Mutations
Induced or natural mutations have been shown to elicit biased
signaling in various GPCRs (174–176). In the FSHR, active and
inactive mutations and SNP have been reported (177) but most
of them are insufficiently documented to suggest they could
induce a receptor bias. However, some studies suggested that a
mutation or a SNP at the FSHR can modify the balance between
different signaling pathways (Figure 4). The Ala189Val inactive
mutation, leading to subfertility in men and infertility in women,
impairs the G protein pathway but not β-arrestin-dependent
ERK activation (6, 178). However, this Ala189Val mutation
provokes intracellular retention of the FSHR, hence decreases
its plasma membrane expression level (179). Tranchant et al.
demonstrated that the FSHR also elicits preferential β-arrestin-
dependent signaling when its plasmamembrane density is similar
to that of the Ala189Val mutant. Therefore, the Ala189Val
mutation could very well represent a case of system bias rather
than of receptor bias. Uchida et al. described an inactivating
mutation (Met512Ile) in the FSHR of a woman with ovarian
hyperstimulation syndrome (OHSS) but probably not related
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with this pathology (179). The mutant receptor led to decreased
cAMP and PI3K responses whereas ERK activation remained
unchanged compared to wild-type FSHR. Further investigations
are required to ascertain whether the imbalance between the
different signaling pathways is caused by a true receptor bias
or whether it also results from affected cell surface expression
of the receptor. Another case is the Asp431Ile mutation in
the extracellular loop 1 (EL1) that has been found in a man
with undetectable circulating FSH but normal spermatogenesis
(180). This mutation leads to a marked decrease in FSH-
induced desensitization and internalization compared to the
wild-type receptor.

The FSHR gene carries about 2,000 SNPs, among which
the SNP p.N680S (c.2039A>G) is a discrete marker of
ovarian response. Women bearing the serine variant display
resistance to FSH compared with those bearing the asparagine
variant. p.N680S S homozygous FSHR differently stimulates
intracellular cAMP and leads to different kinetics of ERK
and CREB phosphorylation (181). Kara et al. have shown
that site-directed mutagenesis of all the five ser/thr residues
located in the C-tail at position 638–644 of the rat FSHR
reduced its ability to interact with β-arrestins upon FSH
stimulation (43). Interestingly, the internalization of the mutant
receptor was reduced while its ability to activate ERK via
the β-arrestin-dependent pathway was increased, indicating
receptor bias.

CONCLUSIONS

The observation that FSHR transduction can be finely tuned
by a variety of biased ligands, mutations or polymorphisms,
further emphasizes the importance to better understand the
complex signaling networks that are modulated (i.e., activated
or inhibited) downstream of the FSHR. These novel biased
ligands and receptor variants are great research tools that should
really help us deciphering the molecular mechanisms involved
in FSHR-associated physiopathology. In addition, a number of
existing ligands and mutants have been characterized solely by
measuring plasmamembrane expression and/or cAMP response.
Further characterization is required and may generate insightful
findings. Biased ligands also open intriguing prospects in drug
discovery. In particular, low molecular weight agonists of the
FSHR could lead to the development of orally-active treatments.

Such administration route would bypass the multiple injections
of gonadotropin preparations that remain needed in the current
protocols used in assisted reproduction. Moreover, it becomes
possible to sort out the pathways leading to ovulation and those
responsible for OHSS, and the availability of pathway-selective
lowmolecular weight agonists at the FSHR could pave the way for
the development of safer treatments, presenting reducing risks
of OHSS. Modulation of relative FSH and LH activities could
also open new avenues in the treatment of polycystic ovarian
syndrome (PCOS).

On a more general note, the availability of allosteric
compounds active at the FSHR, opens the unprecedented
opportunity to enhance or dampen the transduction activities
of the FSHR in vivo, while conserving the rhythmicity and
biochemical diversity of endogenous FSH, a property that
no orthosteric compound can match. The conditions of
application of such treatments will obviously require extensive
pre-clinical and clinical studies. Despite of these limitations,
hampering any hope for short-term clinical use, the advent
of biased and allosteric compounds certainly represents an
important juncture in a field that has uniquely relied for
so long on natural and recombinant gonadotropins to treat
infertility. Finally, orally active low molecular weight FSHR
antagonists may also lead to novel classes of oral contraceptives
devoid of the side effects associated with current sex steroid-
based contraceptives.
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