Towards nonlinear cell population model structured by molecular content

Romain Yvinec

Inra Tours - Match Heidelberg

Joint work with M. Mackey, M. Tyran-Kaminska, A. Marciniak-Czochra

Outline

Bursting and Division in gene expression models

Stochasticity in Molecular biology Bursting and Division as Jump Processes

Nonlinear population model

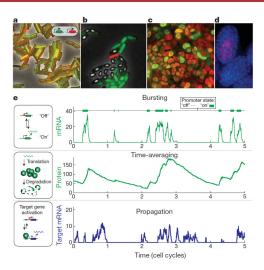
Theoretical results
Numerical results

Outline

Bursting and Division in gene expression models Stochasticity in Molecular biology Bursting and Division as Jump Processes

Nonlinear population model

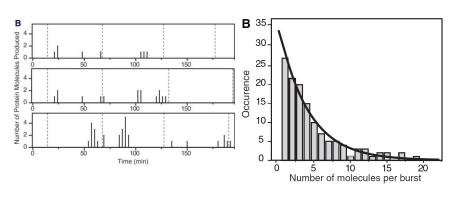
Theoretical results Numerical results



[Eldar and Elowitz Nature 2010]

Much more accurate measurements

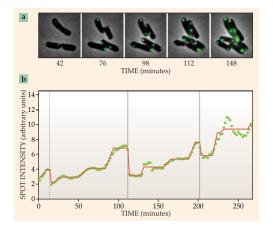
The bursting event are well characterized



[Yu et al. Science 06]

Much more accurate measurements

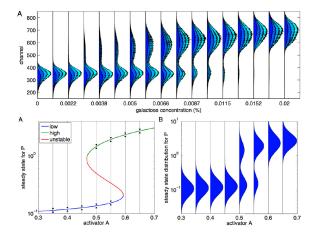
Trajectories can be analyzed on single cells.



[Golding et al. Cell 2005, Kondev Physics Today 2014]

Much more accurate measurements

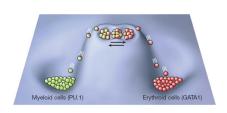
Bifurcation can be studied on probability distributions.



[Song et al. Plos CB 2010, Mackey et al. JTB 2011, SIAM 2013]

A typical example linking gene expression to cell fate

The antagonism Gata-1/PU.1 in heamatopoietic progenitor

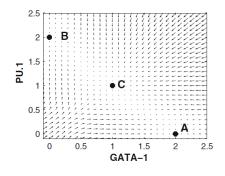


[Enver et al. Stem Cell 2009]

A typical example linking gene expression to cell fate

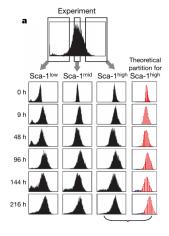
The antagonism Gata-1/PU1, modeled by ODE

$$\begin{split} \frac{d[G]}{dt} &= a_1 \frac{[G]^n}{\theta_{a_1}^n + [G]^n} + b_1 \frac{\theta_{b_1}^n}{\theta_{b_1}^n + [P]^n} - k_1[G] \\ \frac{d[P]}{dt} &= a_2 \frac{[P]^n}{\theta_{a_2}^n + [P]^n} + b_2 \frac{\theta_{b_2}^n}{\theta_{b_2}^n + [G]^n} - k_2[P] \end{split}$$



[Duff et al. JMB 2012]

A typical example linking gene expression to cell fate



Sca1hi Day 3 Day 5 Day 8 Day 13 Sca1

[Chang et al. Nature Letters 08]

[Pina et al. Nature cell bio. 2012]

Outline

Bursting and Division in gene expression models

Stochasticity in Molecular biology

Bursting and Division as Jump Processes

Nonlinear population model

Theoretical results

Numerical results

We define a pure-jump process $(X(t))_{t\geq 0}$ on \mathbb{R}_+^* with two different transitions :

- ▶ Bursting at rate $\lambda_b(x)$ and jump distribution $\kappa_b(y,x)\mathbf{1}_{\{y>x\}}dy$
- ▶ Division at rate $\lambda_d(x)$ and jump distribution $\kappa_d(y,x)\mathbf{1}_{\{y< x\}}dy$

Pathwise construction with the sequence $(U_n, V_n)_{n\geq 1}$, of i.i.d uniform random variable on (0,1)

 $ightharpoonup T_n = T_{n-1} - (1/\lambda(X_{n-1})) \ln(U_{n-1}), \text{ where}$

$$\lambda(x) = \lambda_b(x) + \lambda_d(x).$$

► $X_n = F_K^{-1}(V_n, X_{n-1})$, where $F_K(y, x)$ is the cum. dist. fonct. associated to

$$K(y,x) = \frac{\lambda_b(x)}{\lambda_b(x) + \lambda_d(x)} \kappa_b(y,x) \mathbf{1}_{\{y > x\}} + \frac{\lambda_d(x)}{\lambda_b(x) + \lambda_d(x)} \kappa_d(y,x) \mathbf{1}_{\{y < x\}}.$$

 $X(t) = X_{n-1}$ for all $T_{n-1} \le t < T_n$.

This model is well-defined up to the explosion time,

$$T_{\infty} = \lim_{n \to \infty} T_n$$

A well-known sufficient condition for non-explosion ($T_{\infty}=\infty$) is given by

$$\sum_{n>0} \frac{1}{\lambda_b(X_n) + \lambda_d(X_n)} = \infty.$$

In particular, this is the case for bounded jump rate.

Another criteria is provided by Lyapounov-fonction strategy (see [Mevn and Tweedie 93]). Let \mathcal{A} be the generator of $(X(t))_{t\geq 0}$,

$$\mathcal{A}f(x) = \lambda_b(x) \Big(\int_x^\infty (f(y) - f(x)) \kappa_b(y, x) dy \Big)$$
$$+ \lambda_d(x) \Big(\int_0^x (f(y) - f(x)) \kappa_d(y, x) dy \Big).$$

If there exists c > 0, V a positive measurable function s.t $V(x) \to \infty$ when $x \to 0$ and $x \to \infty$, $V \in \mathcal{D}(A)$ and

$$AV(x) \le cV(x), \quad x > 0,$$

then $(X(t))_{t>0}$ is non-explosif.

The fonction $V(x) = x^{-\gamma} \mathbf{1}_{\{x<1\}} + x^{\alpha} \mathbf{1}_{\{x>1\}}$ is suitable if there exists A, B, β, δ ,

$$ightharpoonup \overline{\kappa}_b(y,x) = \int_y^\infty \kappa_b(z,x) dz \le c(x/y)^\beta, \ \beta > \alpha$$

$$ightharpoonup \overline{\kappa}_d(y,x) = \int_0^y \kappa_d(z,x) dz \le c(y/x)^\delta, \ \delta > \gamma$$

 $\blacktriangleright \lambda_d(x) < A\lambda_b(x) + B \text{ as } x \to 0 \text{ and}$

$$\lim_{x\to 0}\lambda_b(x)x^{\delta}\int_x^1 y^{-\delta}\kappa_b(y,x)dy<\infty$$

 $\blacktriangleright \lambda_b(x) < A\lambda_d(x) + B \text{ as } x \to \infty \text{ and}$

$$\lim_{x\to\infty}\lambda_d(x)x^{-\alpha}\int_1^x y^\alpha\kappa_d(y,x)dy<\infty$$

Remark

"Similar" condition holds for ergodicity.

Remark

Non-explosion + irreductibility + Existence of a unique invariant $measure \Rightarrow ergodicity.$

▶ An analogous study on the set of probability density $(\int u = 1)$.

$$\begin{split} \frac{\partial u(t,x)}{\partial t} &= -\lambda_b(x)u(t,x) + \int_0^x \lambda_b(y)u(t,y)\kappa_b(x,y)dy \\ &- \lambda_d(x)u(t,x) + \int_x^\infty \lambda_d(y)u(t,y)\kappa_d(x,y)dy \end{split}$$

This defines a semi-group P(t) on L^1 . We will use

Theorem (Pichor and Rudnicki JM2A 2000)

If P(t)

- is a stochastic semigroup : $||P(t)u||_1 = ||u||_1$,
- ▶ is partially integral : there exists $t_0 > 0$ and p s.t.

$$\int_0^\infty \int_0^\infty p(x,y) \, dy \, dx > 0 \quad \text{and} \quad P(t_0) u(x) \ge \int_0^\infty p(x,y) u(y) \, dy$$

and possess a unique invariant density,

then P(t) is asymptotically stable.

The Master equation may be rewritten as

$$\frac{du}{dt} = -\lambda u + K(\lambda u),\tag{1}$$

where

$$Kv(x) = \int_0^x \frac{\lambda_b(y)}{\lambda_b(y) + \lambda_d(y)} u(t, y) \kappa_b(x, y) dy + \int_x^\infty \frac{\lambda_d(y)}{\lambda_b(y) + \lambda_d(y)} u(t, y) \kappa_d(x, y) dy$$

If K has a strictly positive fixed point in L^1 , then P(t) is stochastic ([Mackey et al. SIAM 13]). Note also that any stationary solution u^* of (1) must satisfy the flux condition

$$\int_0^x \overline{\kappa}_b(x,y) \lambda_b(y) u^*(y) dy = \int_x^\infty \overline{\kappa}_d(x,y) \lambda_d(y) u^*(y) dy$$

We consider the separable case

$$\kappa_b(x,y) = -\frac{K_b'(x)}{K_b(y)}, \quad x > y, \quad \kappa_d(x,y) = \frac{K_d'(x)}{K_d(y)}, \quad x < y.$$

where $K_b(y) \to 0$ as $y \to \infty$ and $K(y) \to 0$ as $y \to 0$. We define

$$G(x) = \frac{K_d'(x)}{K_d(x)} - \frac{K_b'(x)}{K_b(x)}, \quad Q_b(x) = \int_x^{\overline{x}} \frac{\lambda_b(y)}{\lambda(y)} G(y) dy.$$

Theorem

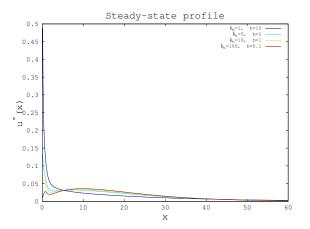
Suppose that

$$c_b := \int_0^\infty \frac{K_b(x)}{\lambda(x)} G(x) e^{-Q_b(x)} dx < \infty, \quad \int_0^\infty K_b(x) G(x) e^{-Q_b(x)} dx < \infty$$

Then the semigroup $\{P(t)\}_{t\geq 0}$ is stochastic and is asymptotically stable, with

$$u_*(x) = \frac{1}{c_b} \frac{K_b(x)}{\lambda(x)} G(x) e^{-Q_b(x)}$$

$$\frac{du^*}{dx} = \left[-\frac{\lambda'(x)}{\lambda(x)} + \frac{K_b'(x)}{K_b(x)} + \frac{G'(x)}{G(x)} + \frac{\lambda_b(x)}{\lambda(x)}G(x) \right] u^*(x)$$



$$K_b(x) = e^{-x/b}$$
, $\lambda_b(x) = \lambda_b \frac{1+x^n}{\Lambda+x^n}$, $K_d(x) = x$, $\lambda_d(x) = 1$.

▶ This theorem can be used to show asymptotic convergence for "non-trivial" parameters function.

In particular, the growth-division model

$$\frac{\partial u(t,x)}{\partial t} + \frac{\partial g(x)u(t,x)}{\partial x} = -\lambda_d(x)u(t,x) + \int_x^\infty \lambda_d(y)u(t,y)\frac{K'_d(x)}{K_d(y)}dy,$$

converges for

$$\lambda_d(x) = \alpha x^{\beta - 1} + x^{\beta + 1}$$
$$g(x) = x^{\beta}$$
$$K_d(x) = x,$$

for $0 < \beta < 1$. $0 < \alpha < 1$. towards

$$u_*(x) = \frac{K_d(x)}{cg(x)} e^{-\int_{\bar{x}}^x \frac{\lambda_d(y)}{g(y)} dy},$$

but

$$\frac{\lambda_d}{g} \notin L_0^1$$

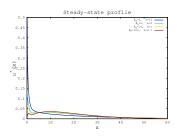
$$\tau_{u,z} := \inf\{t \geq 0, X_t \geq z\},\$$

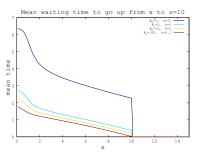
then

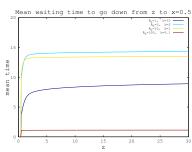
$$V_{u,z}(y) = \mathbb{E}_y[\tau_{u,z}]$$

is solution of

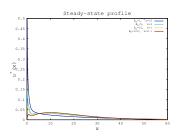
$$\begin{cases} A V_{u,z}(y) = -1, & y < z, \\ V_{u,z}(y) = 0, & y \ge z. \end{cases}$$
 (2)

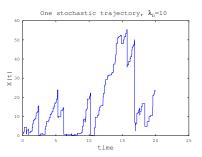


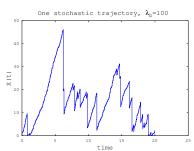




$$K_b(x) = e^{-x/b}$$
, $\lambda_b(x) = \lambda_b \frac{1+x^n}{\Lambda+x^n}$, $K_d(x) = x$, $\lambda_d(x) \equiv 1$.

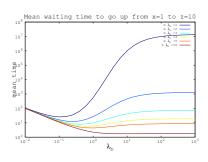


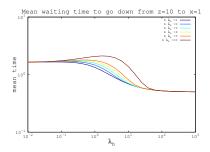




$$K_b(x) = e^{-x/b}$$
, $\lambda_b(x) = \lambda_b \frac{1+x^n}{\Lambda+x^n}$, $K_d(x) = x$, $\lambda_d(x) \equiv 1$.

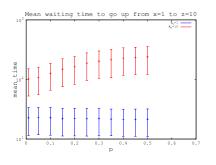
The mean waiting time is non-monotonic with respect to the bursting property.

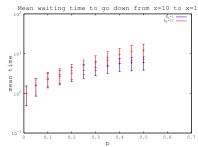




$$\lambda_d \equiv 2$$
, $K_d(x) = x$, $\lambda_b(x) \equiv \lambda_b$, $K_b(x) = e^{-x/b}$

The mean waiting time is also affected by the asymmetry of the division.





$$\lambda_d(x) \equiv 2,$$
 $K_d(x) = 0.5 \mathcal{N}(xp, xp(1-p)) + 0.5 \mathcal{N}(x(1-p), xp(1-p)),$
 $K_b(x) = e^{-x/b}, \ b\lambda_b = 2$

Outline

Bursting and Division in gene expression models

Stochasticity in Molecular biology Bursting and Division as Jump Processes

Nonlinear population model

Theoretical results

Numerical results

We wish to investigate (macroscopic) population models with nonlinear feedback on the division rate

$$\begin{split} \frac{\partial u(t,x)}{\partial t} &= -\lambda_b(x)u(t,x) + \int_0^x \lambda_b(y)u(t,y)\kappa_b(x,y)dy \\ &- \lambda_d(x,S)u(t,x) + 2\int_x^\infty \lambda_d(y,S)u(t,y)\kappa_d(x,y)dy - \mu(x)u(t,x) \end{split}$$

with κ_d symmetric (total molecular content preserved at division) the feeback strenght is given by

$$S(t) = \int_0^\infty \psi(x) u(t,x) dx, \quad \psi(x) = \mathbf{1}_{\{x \ge x_0\}}.$$

We will restrict to the case of *constant* division and death rates, so that

$$\frac{d}{dt}\Big(\int_0^\infty u(t,x)dx\Big) = (\lambda(S) - \mu)\int_0^\infty u(t,x)dx$$

If all cells participate to the regulation of the division rate $(x_0 = 0)$, we have immediately

Theorem

Let
$$\kappa_b(x,y) = -\frac{\kappa_b'(x)}{\kappa_b(y)}$$
, and $\kappa_d(x,y) = \frac{\kappa_d'(x)}{\kappa_d(y)}$. We assume

$$c_b := \int_0^\infty \frac{K_b(x)}{\lambda(x)} G(x) e^{-Q_b(x)} dx < \infty, \quad \int_0^\infty K_b(x) G(x) e^{-Q_b(x)} dx < \infty$$

and that $S \mapsto \lambda_d(S)$ is continuous monotonically decreasing, with $\lambda_d(0) > \mu$ and $\lim_{S \to \infty} \lambda_d(S) < \mu$, then, for any initial density u_0 , u(t,x) converges as $t \to \infty$ in L^1 towards

$$\lambda_d^{-1}(\mu)u^*$$
.

In the case $x_0 > 0$, we can only prove a persistance result for the equation

$$\frac{\partial u(t,x)}{\partial t} + \frac{\partial g(x)u(t,x)}{\partial x} = -\lambda_d(S)u(t,x) + 2\int_x^\infty \lambda_d(S)u(t,y)\kappa_d(x,y)dy - \mu u(t,x)$$

Theorem

With g smooth, bounded and bounded away from 0, starting with a positive $u_0 \in L^1$, we have

$$0 < \inf_{t \ge 0} \int_0^\infty u(t, x) dx \le \sup_{t \ge 0} \int_0^\infty u(t, x) dx < \infty$$
$$0 < \inf_{t \ge 0} S(t) \le \sup_{t \ge 0} S(t) < \infty$$

Démonstration.

We define $v(t,x):=e^{\int_0^t (\mu-\lambda_d(S(s)))ds}u(t,x)$, so that

$$\frac{\partial v(t,x)}{\partial t} + \frac{\partial g(x)v(t,x)}{\partial x} = -2\lambda_d(S)v(t,x) + 2\lambda_d(S)\int_x^\infty v(t,y)\kappa_d(x,y)dy$$

We use a coupling strategy to show that

$$\int_{x_0}^{\infty} v(t,x)dx \ge c(1+\varepsilon(t))$$

with $\varepsilon(t) \to 0$ (at exponential speed). For this, we use the coupling

$$Af(x,y) = g(x)f'(x) + g(y)f'(y)$$

$$+ 2\lambda_d(S(t)) \left(\int_0^1 (f(xz,yz) - f(x,y))dz \right)$$

$$+ 2(\|\lambda_d\|_{\infty} - \lambda_d(S(t))) \left(\int_0^1 (f(xz,y) - f(x,y))dz \right).$$

Then, $\int_{x_0}^{\infty} v(t,x) dx \ge \int_{x_0}^{\infty} w(t,x) dx$ where

$$\frac{\partial w(t,x)}{\partial t} + \frac{\partial g(x)w(t,x)}{\partial x} = -2\|\lambda_d\|_{\infty}w(t,x) + 2\|\lambda_d\|_{\infty}\int_{x}^{\infty}w(t,y)\kappa_d(x,y)dy$$

which converges as $t \to \infty$ due to hypotheses on g, κ_d .

Outline

Bursting and Division in gene expression models

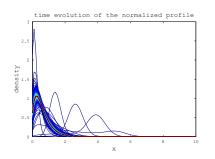
Stochasticity in Molecular biology Bursting and Division as Jump Processes

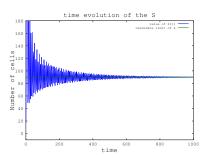
Nonlinear population model

Theoretical results

Numerical results

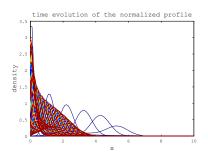
Numerical results

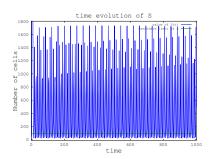




$$\mu = 1$$
, $\lambda_d(x, S) \equiv \frac{10}{1 + 0.1 * S}$, $K_d(x) = x$, $x_0 = 1$, $g(x) \equiv 0.6$

Numerical results indicate a Hopf bifurcation





$$\mu = 1$$
, $\lambda_d(x, S) \equiv \frac{10}{1 + 0.1 * S}$, $K_d(x) = x$, $x_0 = 1$, $g(x) \equiv 0.5$

The bursting property shifts the Hopf bifurcation : with $\mu=1$, $\lambda_d(x,S)\equiv \frac{10}{1+0.1*S}$, $K_d(x)=x$, $x_0=1$, $K_b(x)=e^{-x/b}$, $\lambda_b(x)\equiv \lambda_b$

$b\lambda_b \backslash \lambda_b$	100	10	1	0.1
0.6	+	+	+	+
0.5	-	+	+	+
0.4	-	-	+	+
0.1	-	-	-	+

 $\begin{tabular}{ll} \textbf{Table}: += & A symptotic convergence towards steady state -= oscillation \\ \end{tabular}$

The asymmetry at division also shifts the Hopf bifurcation: with $\mu = 1, \ \lambda_d(x, S) \equiv \frac{10}{1 + 0.1 * S}$ $\kappa_d(\cdot, x) = 0.5 \mathcal{N}(xp, xp(1-p)) + 0.5 \mathcal{N}(x(1-p), xp(1-p)),$ $x_0 = 1, g(x) \equiv g$

g\p	0.5	0.4	0.2	0.1	0.01
0.7	-	+	+	+	+
0.6	-	-	+	+	+
0.5	-	-	-	-	+

Table: +=Asymptotic convergence towards steady state -= oscillation

Vielen Dank!