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Signaling Biology



Signaling

General issues

» A Ligand binds a receptor in the cell
surface and leads to a signal.

» The bound receptor-ligand complex leads
to a cascade of reactions (enzymatic
catalysis, phosphorylation,...) up to some
effector molecule that leads to a cellular
response.
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General issues

» A Ligand binds a receptor and signals.

» The bound receptor-ligand complex leads Ligand
to a cascade of reactions. g

» G Protein Coupled Receptor (GPRC) : A@
Family of receptor, widely targeted by v
drugs. EPER

» Two main pathways : G protein pathway
and [-arrestin (signal vs internalization)




Signaling

General issues

» A Ligand binds a receptor and signals.

v

The bound receptor-ligand complex leads
to a cascade of reactions.

G Protein Coupled Receptor (GPRC)

Two pathways : G protein and S-arrestin.

v

v

v

More complex issues : S-arrestin induced
pathway leads to a different signal on
the same effector.




Signaling

General issues

» A Ligand binds a receptor and signals.

» The bound receptor-ligand complex leads
to a cascade of reactions.

» G Protein Coupled Receptor (GPRC)

» Complex interactions between G protein
and [-arrestin pathways.

Drug discovery

» Signaling through one pathway and
not another one : Bias (synthetic
hormone, mutant receptor, small
molecules...)




Signaling

General issues

» A Ligand binds a receptor and signals.

» The bound receptor-ligand complex leads
to a cascade of reactions.

» G Protein Coupled Receptor (GPRC)

» Complex interactions between G protein
and [-arrestin pathways.

Computational Modeling

» Help deciphering the intricate
effect of each pathway.

» Quantify the precise effect of a
specific couple Ligand-Receptor.



Signaling

GPCR signaling through ERK phosphorylation

The extracellular signal-regulated kinase
ERK is activated both by the G protein
and the S-arrestin pathway but (Ahn et
al. J Biol Chem (2004)) :

» The spatial distribution are
distinct.

» The kinetics are distinct.
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Signaling

GPCR signaling through ERK phosphorylation

The extracellular signal-regulated kinase
ERK is activated both by the G protein
and the [-arrestin pathway but (Ahn et
al. J Biol Chem (2004)) :

» The spatial distribution are distinct.

» The kinetics are distinct.

Transient and sustained ERK activa-
tion have been shown to regulate cell
fates such as growth and differen-
tiation.(Sasagawa et al. Nat Cell Biol

(2005)) \ /*v
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Signaling

GPCR signaling through ERK phosphorylation

The extracellular signal-regulated kinase
ERK is activated both by the G protein
and the [-arrestin pathway but (Ahn et
al. J Biol Chem (2004)) :

» The spatial distribution are distinct.

» The kinetics are distinct.

(-arrestin 2 dependent ERK pathway can
be activated independently of G pro-
teins with a mutant receptor (Wei et al.
PNAS (2004)).
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Signaling

Case study : Angiotensin receptor

» Angiotensin |l type 1A receptor (AT1AR) transfected in
cultured human embryonic kidney (HEK 293 cells).

» ERK phosphorylation data : Phosphorylated ERK in
immunoblots, quantified by densitometry (Kim et al. PNAS
2005)

» DAG accumulation and PKC activity data, measured in real
time by FRET sensors.
» Four perturbed conditions in addition to control :
» [-arrestin 2 siRNA
» G protein-coupled receptor kinases (GRK2/3 and GRK5/6)
siRNA
» PKC inhibitor.



Modeling and data fitting framework



Modeling

Overview of the methodology

» Starting point : graph of interaction
of molecules (based on biological know-
ledge, literature)




Modeling
Overview of the methodology

» Graph of interaction of molecules

» Law of mass-action : Ordinary Diffe-
rential Equations (ODE) produce time-
dependent trajectories, that depend on
parameters (kinetic rate, initial condi-

e
tion) kol

dc[f] = ko[A] — ki[B] .

ﬂ?:mwmhw-




Modeling

Overview of the methodology

» Graph of interaction of molecules.
» Law of mass-action : ODE.

» Quality of the model based on the in-
troduction of a cost function (based on
statistical error model, or heuristic argu-
ments).




Modeling

Overview of the methodology

v

Graph of interaction of molecules.

v

Law of mass-action : ODE.

Cost function.

v

v

Optimization of the cost function (Fre-
quentist / Bayesian approach). Numeri-
cal search.

Parameter 2

Parameter 1

N .
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Error



Modeling

Overview of the methodology

» Graph of interaction of molecules.
» Law of mass-action : ODE. / \
» Cost function.

» Optimization.
Validation data, prediction and experi- ( )

v

mental design...



Optimization for parameter estimation



Optimization

The

>

major difficulties are due to

Large dimension of parameter space (10 — 100) and state
space (> 10).

Few molecule concentrations measured, and not in absolute
numbers.

Large ODE's may be numerically costly to simulate if they are
stiff.

Parameters can be non-identifiable (non-convexity, presence
of many local minima)



Optimization

The major difficulties are due to
» Large dimension of parameter space (10 — 100) and state
space (> 10).

» Few molecule concentrations measured, and not in absolute
numbers.

» Large ODE's may be numerically costly to simulate if they are
stiff.

» Parameters can be non-identifiable (non-convexity, presence
of many local minima)

A variety of methods can be employed : local/global methods and
deterministic/stochastic methods, hybrid method.
» Gradient descent methods with many random initial start
(D2D, Raue A., et al. Bioinformatics (2015)).

» Hybrid local and global method, based on heuristics
(HYPE, T. Bourquard & A. Poupon)



Optimization
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GENETIC ALGORITHM:
+ Arandom set of n parameter sets is chosen, called parents.
+ Mutation and cross-over produce new sets of parameters, as offsprings.
« The n best parameter sets giving the lowest errors are selected, and become
the parents of next generation.

Lindividual = (param1, param2) Mutation
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+Start with one set of parameter, called parent.

+Local mutations (gaussian) produce offsprings.

*The next parent is the average of the children weighted by their errors.

*Successive steps have memory, mutation are made along the direction of
the previous steps. (Hansen et al. 2003)

New parent : weighted average
+ best direction
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Parameter 1

A random set of parameters is optimized using Genetic algorithm. The resulting parameter set is optimized using CMA-ES.
This operation is repeated until a sufficient number of parameter sets giving small errors is obtained.



Optimization

Critical assessment of methods

How to judge different method 7 How to asses the quality of a fit ?

>

Toy models with in silico simulated data / Benchmark
models.

Absolute value of the error function.
Speed of the algorithm.

Convergence curve (number of best error function value
over number of runs/function evaluation.

Robustness of the minima.



Optimization

Critical assessment of methods

How to judge different method ? How to asses the quality of a fit?
Why/How to deal with Non-ldentifiability (NI)?

» It slows down the numerical search and leads to unreliable
results.

» Theoretical NI : reduction / algebraic relations.

» Numerical NI : distinguish between structural and practical
NI. Calculate sensitivity and one-dimensional profile likelihood.



Optimization

Toy models




Optimization

Toy models : HYPE gives comparable results to high

quality optimization methods
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Results on the angiontensin signaling pathway



Angiontensin

Full model (Heitzler el al. MSB 2012) : 3 pathways

A model that fit the data : role of G protein-coupled receptor
kinases (GRK) in the balance of signals.

Phospho-ERK



Angiontensin

Full model (Heitzler el al. MSB 2012) : Control + 4 pert.

Phospho- ERK




Angiontensin

The model fits the data...
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In black : control experiments.
In Red : perturbated experiments.



Angiontensin

The model correctly predicts some validation dat

>
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Angiontensin

...but the convergence is poor, and the identifiability a

serious issue !

likelihood
T

Critical assessments :
» Convergence curve. ldentifiability of parameters.
» Parsimonious use of parameters. Model selection.



Angiontensin

Model reduction

From 50 parameters...
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Angiontensin

Model reduction

...to 22 parameters!

Phospho-ERK




Angiontensin

Model redu

» The reduced model still fit (reasonably) well...
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Angiontensin
Model reduction

» The reduced model is more parsimonious...

’ Model ‘ # data ‘ # param ‘ X2 ‘ G.o.f ‘ AIC ‘ BIC ‘

Initial 54 51 11.03 | 55 | 113 | 214
Initial 54 50 9.79 | 3.26 | 109 | 209
Initial 54 32 1519 | 0.72 | 79 | 142
Reduced 54 41 12411 1.03 | 94 | 176
Reduced 54 40 12.68 | 0.98 | 93 | 172
Reduce d 54 22 21.07 | 0.68 | 65 | 109




Angiontensin

Model reduction

» The reduced model still fit well...

» and the convergence is better...

likelihood
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run index (sorted by likelihood)



Angiontensin

Model reduction

» The reduced model still fit well...
» and the convergence is better...

» but the identifiability is still poor!

parameter #1 parameter #2 parameter #3 parameter #4
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Angiontensin

Model reduction

» The reduced model still fit well...
» and the convergence is better...

» but the identifiability is still poor! Let's reduced further?

parameter #1 parameter #2 parameter #3

oy

parameter #5 parameter #6

—
jo—o—®
—
eocoo

05 0z 01 06 05 1 12 11 16 0z 0 02 o1 06 o8 1 iz
Il logo (k)




Angiontensin

Systematic reduction

Phospho- ERK
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Systematic reduction
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Angiontensin

Systematic reduction
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Angiontensin

Systematic reduction

Cl -
Phospho ERK [ = Phospho-| ERK




Angiontensin

Systematic reduction

Phospho- ERK
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Systematic reduction

Phosphio-ERK
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Systematic reduction

Phospho-ERK I
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Angiontensin

Systematic reduction

Phospho- ERK
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Systematic reduction
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Angiontensin

With model selection criteria :
> a model with 19 parameters e

» good convergence
properties (10% of runs
reached the optima)

> most parameters are

identifiable R T—T 0w
1} /
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Angiontensin

What do we learn (so far) ?

» The three path-
ways are a neces-
sary condition to re-
produce the data.
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Angiontensin

What do we learn (so far) ?

» Three pathways are
necessary.

» An internalization
pathway, inde-
pendent of the
[B-arrestin signa-
ling pathway, s
mandatory.
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Angiontensin

What do we learn (so far) ?

» Three pathways are
necessary.

» An independent
internalization path-
way is mandatory.

» A minimal model
with three reversible
pathway with 10 pa-
rameter is able to fit
the phospho ERK
data and its para-

i - o) ERK &)
meters are all iden PhospiG ERK ' Phospo £RK
tifiable.




Angiontensin

What do we learn (so far) ?

» Three pathways are
necessary.

» An independent
internalization path-
way is mandatory.

» A minimal model
can fit the phos-
pho ERK data and
is identifiable.

» The best mo-
del able to fit

{ o)
all data present — pho;;;?aERK

non-identifiability
=  Experimental
design, Additional
data.




Angiontensin

Conclusion

>

A full model able to fit the data (Heitzler el al. MSB 2012).

Accurate parameter estimation leads to accurate prediction.

v

v

Further improvements with model reduction/selection.

v

Parameter identifiability with a good fit can be achieved.

v

We have shed light on the importance of three pathways in
GPCR signaling, and its regulations.
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Conclusion

>

A full model able to fit the data (Heitzler el al. MSB 2012).

Accurate parameter estimation leads to accurate prediction.

v

v

Further improvements with model reduction/selection.

v

Parameter identifiability with a good fit can be achieved.

v

We have shed light on the importance of three pathways in
GPCR signaling, and its regulations.

Thanks for your attention !
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validation

pERK with GRK23,GRKS56 overexpression and G inhibition
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Angiontensin

validation data
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