Time scales in a coagulation-fragmentation model Nucleation Time in Stochastic Becker-Döring Model

<u>Romain Yvinec</u>¹, Samuel Bernard^{2,3}, Tom Chou⁴, Julien Deschamps⁵, Maria R. D'Orsogna⁶, Erwan Hingant⁷ and Laurent Pujo-Menjouet^{2,3}

¹BIOS group INRA Tours, France.

²Institut Camille Jordan, Université Lyon 1, Villeurbanne, France.

³INRIA Team Dracula, Inria Center Grenoble Rhône-Alpes, France.

⁴Depts. of Biomathematics and Mathematics, UCLA, Los Angeles, USA. ⁵DIMA, Universita degli Studi di Genova, Italy.

⁶Dept. of Mathematics, CSUN, Los Angeles, USA.

⁷Departamento de Matemática, U. Federal de Campina Grande, PB, Brasil.

Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time Re-scaling reaction rates with *M* Re-scaling nucleus size with *M* Back to classical nucleation theory Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time

Motivation BD Coarse-graining SBD Variability

Protein accumulation in amyloid by nucleation-dependent polymerization

Misfolding

Prusiner model for prion

The early aggregation formation requires a series of association steps that are thermodynamically unfavorable (with an dissociation constant $K_d \gg 1$).

These aggregation steps are unfavorable up to a given size (that is not currently known), which is referred to the nucleus size.

Motivation BD Coarse-graining SBD Variability

Protein accumulation in amyloid by nucleation-dependent polymerization

Misfolding

Prusiner model for prion

The early aggregation formation requires a series of association steps that are thermodynamically unfavorable (with an dissociation constant $K_d \gg 1$).

These aggregation steps are unfavorable up to a given size (that is not currently known), which is referred to the nucleus size.

Key questions

We want to study nucleation mechanism for *in-vitro* spontaneous polymerization experiments of rPrP (kinetics monitored by fluorescence intensity)

- How to include nucleation in (macroscopic) model of protein polymerization?
- How to explain large variability in nucleation lag time, despite the large number of proteins?

Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time

Motivation BD Coarse-graining SBD Variability

Becker-Döring model

Reversible one-step coagulation-fragmentation

$$C_i+C_1 \xrightarrow{p_i}_{q_{i+1}} C_{i+1}, \quad i=2, ,3, \cdots$$

- First used in the work Kinetic treatment of nucleation in supersaturated vapors by physicists Becker and Döring (1935).
- Traditionally used as an infinite set of Ordinary Differential Equations. More recently used as a finite state-space Markov Chain.

Reversible one-step coagulation-fragmentation

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$$

 Purely kinetic model (law of mass-action) : no space, no polymer structure (but size-dependent kinetic rates).

Reversible one-step coagulation-fragmentation

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

$$C_i + C_1 \xrightarrow[q_{i+1}]{p_i} C_{i+1}$$

- Purely kinetic model (law of mass-action) : no space, no polymer structure (but size-dependent kinetic rates).
- Indirect interaction between polymer C_i, i ≥ 2 via the available number of monomers C₁.

$$C_1(t) + \sum_{i \ge 2} iC_i(t) = \text{constant}$$

Reversible one-step coagulation-fragmentation

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$$

ь

Typical coefficient are derived from physical principles

$$p_i = i^{lpha}, \quad q_i = p_i \left(z_s + \frac{q}{i^{\gamma}} \right) \,.$$

Reversible one-step coagulation-fragmentation

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

•

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

Deterministic and Stochastic Becker-Döring equations: Past and Recent Mathematical Developments

E. Hingant R. Yvinec

April 24, 2017

Typical coefficient are derived from physical principles

$$p_i = i^{lpha}, \quad q_i = p_i \left(z_s + rac{q}{i^{\gamma}}
ight) \,.$$

Reversible one-step coagulation-fragmentation Set of kinetic reactions :

$$C_i + C_1 \underset{q_{i+1}}{\underbrace{\xrightarrow{p_i}}} C_{i+1}, \quad i \ge 1.$$

- In spontaneous polymerization experiment,
 - Initial condition given by $c_i(t = 0) = 0 \ \forall i \ge 2$.
 - Measured variable : $\sum_{i \ge n} iC_i$ (*n* is an unknown parameter)
- The (observed) nucleation time is given by

$$\inf\{t \ge 0: \sum_{i \ge n} iC_i(t) \ge \delta m \mid C_i(t=0) = m\delta_{i=1}\}.$$

Another quantity of interest is the following **First Passage Time**,

$$\inf\{t \ge 0: C_N(t) \ge 1 \mid C_i(t=0) = m\delta_{i=1}\}.$$

Deterministic Becker-Döring model

Reversible one-step coagulation-fragmentation

 $C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$

$$\begin{cases} \frac{dc_{i}}{dt} = J_{i-1} - J_{i}, i \ge 2, \\ J_{i} = p_{i}c_{1}c_{i} - q_{i+1}c_{i+1}, i \ge 1, \\ \frac{dc_{1}}{dt} = -J_{1} - \sum_{i=1}^{\infty} J_{i}. \end{cases}$$

Deterministic version : infinite system of ODEs.

Deterministic Becker-Döring model

Reversible one-step coagulation-fragmentation

 $C_i + C_1 \xrightarrow{p_i}_{q_{i+1}} C_{i+1}$

$$\begin{cases} \frac{dc_i}{dt} &= J_{i-1} - J_i, i \ge 2, \\ J_i &= p_i c_1 c_i - q_{i+1} c_{i+1}, i \ge 1, \\ \frac{dc_1}{dt} &= -J_1 - \sum_{i=1}^{\infty} J_i. \end{cases}$$

- Deterministic version : infinite system of ODEs.
- Well-posedness theory for sublinear coefficients in

$$\mathcal{X} = \left\{ (c_i)_{i \ge 1} \in \mathbb{R}_+^{\mathbb{N}} : \sum_{i \ge 1} ic_i < \infty \right\}$$

Deterministic Becker-Döring model

Reversible one-step coagulation-fragmentation

 $C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$

$$\begin{cases} \frac{dc_i}{dt} = J_{i-1} - J_i, i \ge 2, \\ J_i = p_i c_1 c_i - q_{i+1} c_{i+1}, i \ge 1, \\ \frac{dc_1}{dt} = -J_1 - \sum_{i=1}^{\infty} J_i. \end{cases}$$

- Deterministic version : infinite system of ODEs.
- Well-posedness theory for sublinear coefficients in

$$\mathcal{X} = \left\{ (c_i)_{i \ge 1} \in \mathbb{R}_+^{\mathbb{N}} : \sum_{i \ge 1} ic_i < \infty \right\}$$

Preserves mass for all times

$$\sum_{i=1}^{\infty} ic_i(t) = \sum_{i=1}^{\infty} ic_i(0) =: m.$$

Equilibrium of the BD model

1

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

$$\begin{cases} \frac{dc_{i}}{dt} = J_{i-1} - J_{i}, i \ge 2, \\ J_{i} = p_{i}c_{1}c_{i} - q_{i+1}c_{i+1}, i \ge 1, \\ \frac{dc_{1}}{dt} = -J_{1} - \sum_{i=1}^{\infty} J_{i}. \end{cases}$$

Equilibrium is given by $J_i \equiv J = 0$, which implies

$$c_i = Q_i z^i$$
, $Q_i = \frac{p_1 p_2 \cdots p_{i-1}}{q_2 q_3 \cdots q_i}$

z is given by the mass at equilibrium,

$$m(z) := \sum_{i \ge 1} i Q_i z^i$$

Is there a solution of

$$m(z) = m(z) = n(z) = n(z)$$

Equilibrium of the BD model

$$\begin{array}{rcl} \displaystyle \frac{dc_i}{dt} & = & J_{i-1} - J_i \,, i \geq 2 \,, \\ \displaystyle J_i & = & p_i c_1 c_i - q_{i+1} c_{i+1} \,, i \geq 1 \,, \\ \displaystyle \frac{dc_1}{dt} & = & -J_1 - \sum_{i=1}^{\infty} J_i \,. \end{array}$$

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

If the serie $m(z) = \sum_{i \ge 1} iQ_i z^i$ has a finite radius of convergence z_s and if

$$\sup\{m(z), z < z_s\} =: m_s < \infty,$$

then there is a critical mass such that there is **no equilibrium** with mass $m > m_s$.

Deterministic BD model and Classical Nucleation Theory

$$\begin{cases} \frac{dc_{i}}{dt} = J_{i-1} - J_{i}, i \ge 2, \\ J_{i} = p_{i}c_{1}c_{i} - q_{i+1}c_{i+1}, i \ge 1, \\ \frac{dc_{1}}{dt} = -J_{1} - \sum_{i=1}^{\infty} J_{i}. \end{cases}$$

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986 Slemrod, Nonlinearity 2(3), 1989 Cañizo, Lods, J. Diff. Eqs. 255(5), 2013

If $m \leq m_s$, then (with strong convergence)

$$\lim_{t\to\infty}c_i(t)=Q_iz^i,\quad m(z)=m$$

If $m > m_s$, then (with weak convergence)

$$\lim_{t\to\infty}c_i(t)=Q_iz_s^i,\quad m-m_s=\text{"loss of mass to ∞"}$$

Remark

There is a Lyapounov function, given by

$$H(c) = \sum_{i>1} c_i \left(\ln \left(\frac{c_i}{Q_i} \right) - 1 \right) \,.$$

(de

Deterministic BD model and Classical Nucleation Theory

Penrose, Comm. Math. Phys 124, 1989

$$\begin{cases} \frac{dc_{i}}{dt} = J_{i-1} - J_{i}, i \ge 2, \\ J_{i} = p_{i}c_{1}c_{i} - q_{i+1}c_{i+1}, i \ge 1, \\ \frac{dc_{1}}{dt} = -J_{1} - \sum_{i=1}^{\infty} J_{i}. \end{cases}$$

There exist "almost steady-states", for which $J_i \equiv J^*(m) \neq 0$. As $m \searrow m_s$, if such steady-states are used as initial condition, then the solution

• (for finite t) $c_i(t) - c_i(0)$ is exponentially small

• $\lim_{t\to\infty} c_i(t) - c_i(0)$ is not exponentially small

Moreover $J^*(m)$ is exponentially small

The new phase is being formed extremely slowly, after a long metastable period.

Motivation BD Coarse-graining SBD Variability

Deterministic BD model – Some remarks

 For constant or linear kinetic rates p_i, q_i, one can reduce the system to 1 or 2 ODEs on

$$c_1, \quad \sum_{i\geq 2}c_i, \quad \sum_{i\geq 2}ic_i.$$

Motivation BD Coarse-graining SBD Variability

Deterministic BD model – Some remarks

 For constant or linear kinetic rates p_i, q_i, one can reduce the system to 1 or 2 ODEs on

$$c_1, \quad \sum_{i\geqslant 2}c_i, \quad \sum_{i\geqslant 2}ic_i.$$

 Based on scaling arguments, one can show that for q_i = 0 (irreversible nucleation),

$$\inf\{t \ge 0 : c_n(t) \ge \delta m \mid c_i(t=0) = m\delta_{i=1}\} \simeq \frac{1}{m}.$$

while for " $q_i \rightarrow \infty$ " (pre-equilibrium nucleation),

$$\inf\{t \ge 0 : c_n(t) \ge \delta m \mid c_i(t=0) = m\delta_{i=1}\} \simeq \frac{1}{m^n}.$$

Use of BD-like model in protein polymerization models

Irreversible nucleation step, "Heaviside" rates

Powers & Powers, Biophys. J. 91, 2006

For $b \gg c$: pre-equilibrium hypothesis.

Use of BD-like model in protein polymerization models

pre-equilibrium nucleation step, constant rates

$$\begin{cases} \frac{dc_1}{dt} = -(pc_1 - q)y, \\ \frac{dy}{dt} = Kc_1^n(+Q(m - c_1(t))), \\ \frac{dz}{dt} = (pc_1 - q)y, . \end{cases}$$

Ferrone et al., Bophys. J. 32, 1980

 $y = \sum_{i \ge n} c_i$ $z = \sum_{i \ge n} ic_i$ p(i) = p, q(i) = q Q = secondarynucleation mechanism (fragmentation, heterogeneous nucleation...) -

Use of BD-like model in protein polymerization models

pre-equilibrium nucleation, polymerization-fragmentation, "oligomers at 0"

Knowles et al., Science 326, 2009

Approximate analytical solution.

$$\begin{cases} \frac{dc_1}{dt} = -pc_1 \sum_{i \ge n} c_i + 2q \sum_{i=1}^{n-1} \sum_{j \ge i+1} ic_j - nKc_1^n \\ \frac{dc_i}{dt} = pc_1(c_{i-1} - c_i) - q(i-1)c_i + 2q \sum_{j \ge i+1} c_j + Kc_1^n \delta_{i,n}, i \ge n, \end{cases}$$

$$\frac{dc_1}{dt} = -pc_1y + n(n-1)qy - nKc_1^n .$$

$$\frac{dy}{dt} = qz - (2n-1)qy + Kc_1^n , \quad y = \sum_{i \ge n} c_i ,$$

$$\frac{dz}{dt} = pc_1y - n(n-1)qy + nKc_1^n , \quad z = \sum_{i \ge n} ic_i .$$

Use of BD-like model in protein polymerization models

nr/

Helal et al., J. Math. Biol., 2013 f(t, x)=number of polymer size x $M(c_1) = \alpha c_1^n$

Use of BD-like model in protein polymerization models

Continuous approximation, nucleation as a boundary condition

Prigent et al., Plos One, 7, 2012 Banks et al., J. Math. Biol., 74, 2017

$$\begin{cases} \frac{\partial f(x,t)}{\partial t} + \frac{\partial (p(x)c_1(t) - q(x))f(x,t)}{\partial x} = [\cdots] \\ p(x_0)f(x_0,t) = p(x_0)\frac{p_Nc_1(t)^n}{q_N + p(x_0)c_1(t)}, \end{cases}$$

Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time

We start from a rescaled model ($\varepsilon = 1/n$, $\varepsilon^2 = 1/m$)

$$\left\{ \begin{array}{rcl} \displaystyle \frac{dc_i^{\varepsilon}}{dt} &=& \displaystyle \frac{1}{\varepsilon} \left[J_{i-1}^{\varepsilon} - J_i^{\varepsilon} \right] \,, \quad i \geq 2 \,, \\ m^{\varepsilon} &=& \displaystyle c_1^{\varepsilon}(t) + \varepsilon^2 \sum_{i \geq 2} i c_i^{\varepsilon}(t) \,. \end{array} \right.$$

Scaling idea : excess of monomer, time scale = 1/arepsilon

$$c_1^{arepsilon}(t) := arepsilon^2 c_1(t/arepsilon) \,, \quad c_i^{arepsilon}(t) := c_i(t/arepsilon)$$

Compensated aggregation / fragmentation

$$p_i^{\varepsilon} := rac{p_i}{\varepsilon^2}, \quad q_i^{\varepsilon} := q_i, \quad J_i^{\varepsilon} = p_i^{\varepsilon} c_1^{\varepsilon} c_i^{\varepsilon} - q_{i+1}^{\varepsilon} c_{i+1}^{\varepsilon}$$

and slow first step :

$$p_1^{\varepsilon} := rac{p_1}{\varepsilon^4},$$

We start from a rescaled model ($\varepsilon = 1/n$, $\varepsilon^2 = 1/m$)

$$\left\{ \begin{array}{rcl} \displaystyle \frac{dc_i^{\varepsilon}}{dt} &=& \displaystyle \frac{1}{\varepsilon} \left[J_{i-1}^{\varepsilon} - J_i^{\varepsilon} \right] \,, \quad i \geq 2 \,, \\ m^{\varepsilon} &=& \displaystyle c_1^{\varepsilon}(t) + \varepsilon^2 \sum_{i \geq 2} i c_i^{\varepsilon}(t) \,. \end{array} \right.$$

From the polymer point of view, we have accelerated fluxes, all of the same order : $\frac{1}{r^{\varepsilon}C^{\varepsilon}C^{\varepsilon}}$

$$C_{i-1}^{\varepsilon} \xrightarrow[\frac{1}{\varepsilon} q^{\varepsilon}(\varepsilon(i-1))C_{1}^{\varepsilon}C_{i-1}^{\varepsilon}}_{i} C_{2}^{\varepsilon} \xrightarrow{C_{2}^{\varepsilon}} C_{1}^{\varepsilon}$$

$$C_{i-1}^{\varepsilon} \xrightarrow[\frac{1}{\varepsilon} q^{\varepsilon}(\varepsilon(i)C_{i}^{\varepsilon}C_{i-1}^{\varepsilon})]}_{i} C_{i}^{\varepsilon} \xrightarrow{\frac{1}{\varepsilon} q^{\varepsilon}(\varepsilon(i)C_{1}^{\varepsilon}C_{i}^{\varepsilon})}_{i} C_{i+1}^{\varepsilon},$$

We start from a rescaled model ($\varepsilon = 1/n$, $\varepsilon^2 = 1/m$)

$$\left\{ \begin{array}{rcl} \displaystyle \frac{dc_i^{\varepsilon}}{dt} &=& \displaystyle \frac{1}{\varepsilon} \left[J_{i-1}^{\varepsilon} - J_i^{\varepsilon} \right] \,, \quad i \geq 2 \,, \\ m^{\varepsilon} &=& \displaystyle c_1^{\varepsilon}(t) + \varepsilon^2 \sum_{i \geq 2} i c_i^{\varepsilon}(t) \,. \end{array} \right.$$

Weak form : for any test function (φ_i) ,

$$\frac{d}{dt}\sum_{i\geq 2}c_i^{\varepsilon}\varphi_i = \frac{1}{\varepsilon}J_2^{\varepsilon}\varphi_2 + \sum_{i\geq 3}J_i^{\varepsilon}\left[\frac{\varphi_{i+1}-\varphi_i}{\varepsilon}\right]$$

.

We start from a rescaled model ($\varepsilon = 1/n$, $\varepsilon^2 = 1/m$)

$$\begin{cases} \frac{dc_i^{\varepsilon}}{dt} = \frac{1}{\varepsilon} \left[J_{i-1}^{\varepsilon} - J_i^{\varepsilon} \right], & i \ge 2, \\ m^{\varepsilon} = c_1^{\varepsilon}(t) + \varepsilon^2 \sum_{i \ge 2} i c_i^{\varepsilon}(t). \end{cases}$$

 $f^{\varepsilon}(t,x) = \sum_{i \ge 2} c_i^{\varepsilon}(t) \mathbf{1}_{[(i-1/2)\varepsilon,(i+1/2)\varepsilon)}(x), \ \varphi_i = \int_{(i-1/2)\varepsilon}^{(i+1/2)\varepsilon} \varphi(x) dx,$

$$\begin{cases} \frac{d}{dt} \int_{0}^{+\infty} f^{\varepsilon}(t,x)\varphi(x) \, dx &= \left[p_{1}^{\varepsilon} c_{1}^{\varepsilon}(t)^{2} - q_{2}^{\varepsilon} c_{2}^{\varepsilon}(t) \right] \left(\frac{1}{\varepsilon} \int_{3/2\varepsilon}^{5/2\varepsilon} \varphi(x) \, dx \right) \\ &+ \int_{0}^{+\infty} J^{\varepsilon}(t,x) \Delta_{\varepsilon} \varphi(x) \, dx \, , \\ m^{\varepsilon} &= c_{1}^{\varepsilon}(t) + \int_{0}^{+\infty} x f^{\varepsilon}(t,x) \, dx \, . \end{cases}$$

where $\Delta_{\varepsilon}\varphi(x) = \frac{\varphi(x+\varepsilon)-\varphi(x)}{\varepsilon}$ and $J^{\varepsilon}(t,x) = .p^{\varepsilon}(x)c_{1}^{\varepsilon}(t)f^{\varepsilon}(t,x) - q^{\varepsilon}(x+\varepsilon)f^{\varepsilon}(t,x+\varepsilon)$

$$\begin{split} & \frac{d}{dt} \int_{0}^{+\infty} f^{\varepsilon}(t,x)\varphi(x) \, dx = \left[p_{1}^{\varepsilon} c_{1}^{\varepsilon}(t)^{2} - q_{2}^{\varepsilon} c_{2}^{\varepsilon}(t) \right] \left(\frac{1}{\varepsilon} \int_{3/2\varepsilon}^{5/2\varepsilon} \varphi(x) \, dx \right) \\ & + \int_{0}^{+\infty} \left[p^{\varepsilon}(x) c_{1}^{\varepsilon}(t) f^{\varepsilon}(t,x) \Delta_{\varepsilon} \varphi(x) - q^{\varepsilon}(x) f^{\varepsilon}(t,x) \Delta_{-\varepsilon} \varphi(x) \right] \, dx \,, \end{split}$$

Theorem (Deschamps, Hingant, Y. (2016)) *We suppose :*

- Control and convergence of rate functions
- Control and convergence of initial condition

•
$$p(x) \sim \overline{p}x^{r_p}$$
, $q(x) \sim \overline{q}x^{r_q}$ near $x = 0$, and $r_q \ge r_p$.

•
$$c_1(0) > \rho := \lim_{x \to 0} q(x) / p(x)$$

$$\frac{d}{dt} \int_{0}^{+\infty} f^{\varepsilon}(t,x)\varphi(x) \, dx = \left[p_{1}^{\varepsilon}c_{1}^{\varepsilon}(t)^{2} - q_{2}^{\varepsilon}c_{2}^{\varepsilon}(t)\right] \left(\frac{1}{\varepsilon} \int_{3/2\varepsilon}^{5/2\varepsilon} \varphi(x) \, dx\right)$$
$$+ \int_{0}^{+\infty} \left[p^{\varepsilon}(x)c_{1}^{\varepsilon}(t)f^{\varepsilon}(t,x)\Delta_{\varepsilon}\varphi(x) - q^{\varepsilon}(x)f^{\varepsilon}(t,x)\Delta_{-\varepsilon}\varphi(x)\right] \, dx \, ,$$

Theorem (Deschamps, Hingant, Y. (2016)) we have $f^{\varepsilon} \to f$ (in $C([0, T]; w - * - \mathcal{M}([0, \infty)))$) solution of

$$\begin{aligned} \frac{d}{dt} \int_0^{+\infty} f(t,x)\varphi(x) \, dx &= N(t)\varphi(0) \\ &+ \int_0^{+\infty} \left[p(x)c_1(t) - q(x) \right] \varphi'(x) f(t,x) \, dx \,, \end{aligned}$$

for all $\varphi \in C_0[0,\infty)$, which is the weak form of

$$\frac{\partial f}{\partial t} + \frac{\partial (J(x,t)f(t,x))}{\partial x} = 0, \quad \lim_{x \to 0} J(x,t)f(t,x) = N(t).$$

$$\frac{d}{dt} \int_{0}^{+\infty} f^{\varepsilon}(t,x)\varphi(x) \, dx = \left[p_{1}^{\varepsilon} c_{1}^{\varepsilon}(t)^{2} - q_{2}^{\varepsilon} c_{2}^{\varepsilon}(t) \right] \left(\frac{1}{\varepsilon} \int_{3/2\varepsilon}^{5/2\varepsilon} \varphi(x) \, dx \right)$$
$$+ \int_{0}^{+\infty} \left[p^{\varepsilon}(x) c_{1}^{\varepsilon}(t) f^{\varepsilon}(t,x) \Delta_{\varepsilon} \varphi(x) - q^{\varepsilon}(x) f^{\varepsilon}(t,x) \Delta_{-\varepsilon} \varphi(x) \right] \, dx \, ,$$

Theorem (Deschamps, Hingant, Y. (2016))

N(t) is an explicit function of $c_1(t)$, and is given by a quasi steadystate approximation of $c_2^{\varepsilon} = f^{\varepsilon}(t, 2\varepsilon)$, given by the solution of

$$\begin{cases} 0 = [J_{i-1}(c_1) - J_i(c_1)], & i \ge 2, \\ c_1(t) = c_1. \\ J_i(c_1) = \overline{p} i^{r_p} c_1 - \overline{q} (i+1)^{r_q} \mathbf{1}_{r_p=r_q}. \end{cases}$$

When $c_1 > \lim_{x\to 0} \frac{q(x)}{p(x)}$, the solution of $J_i \equiv J \neq 0$ is linked to the loss of mass in the classical BD theory.

Exemples

► For
$$r_p < r_q$$
, we get $N(c_1) = \alpha c_1^2$, and
$$\lim_{x \to 0^+} x^{r_p} f(t, x) = \frac{\alpha}{\overline{p}} c_1(t) \,.$$
Exemples

For r_p < r_q, we get N(c₁) = αc₁², and
$$\lim_{x \to 0^+} x^{r_p} f(t, x) = \frac{\alpha}{\overline{p}} c_1(t) \, .$$
For r_p = r_q, we get N(c₁) = $\frac{\alpha}{\overline{p}} c_1(\overline{p}c_1 - \overline{q})$, and
$$\lim_{x \to 0^+} x^{r_p} f(t, x) = \frac{\alpha}{\overline{p}} c_1(t) \, .$$

Exemples

• For
$$r_p < r_q$$
, we get $N(c_1) = \alpha c_1^2$, and

$$\lim_{x \to 0^+} x^{r_p} f(t, x) = \frac{\alpha}{\overline{p}} c_1(t) .$$
• For $r_p = r_q$, we get $N(c_1) = \frac{\alpha}{\overline{p}} c_1(\overline{p}c_1 - \overline{q})$, and

$$\lim_{x \to 0^+} x^{r_p} f(t, x) = \frac{\alpha}{\overline{p}} c_1(t) .$$

• For faster fragmentation rate q_2^{ε} , we may get $N(c_1) = \alpha c_1^2 \frac{\overline{\rho}c_1}{\overline{\rho}c_1 + q_2}$ and

$$\lim_{x \to 0^+} x^{r_p} f(t, x) = \alpha c_1(t) \frac{c_1(t)}{\overline{p} c_1(t) + q_2},$$

or $N(c_1) = 0$, and

$$\lim_{x\to 0^+} x^{r_p} f(t,x) = 0.$$

Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time

Stochastic Becker Döring model

Reversible one-step coag.-frag.

g.-frag.

$$\begin{cases}
C_{i}(t) = C_{i}^{in} + J_{i-1}(t) - J_{i}(t), & i \ge 2 \\
J_{i}(t) = Y_{i}^{+} \left(\int_{0}^{t} p_{i}C_{1}(s)C_{i}(s)ds \right) \\
-Y_{i+1}^{-} \left(\int_{0}^{t} q_{i+1}C_{i+1}(s)ds \right) \\
C_{1}(t) = C_{1}^{in} - 2J_{1}(t) - \sum_{i\ge 2} J_{i}(t),
\end{cases}$$

Stochastic version : Finite-state space Markov Chain, in

$$X_M := \left\{ C = (C_i)_{i \ge 1} \in \mathbb{N}^{\mathbb{N}} : \sum_{i=1}^{\infty} iC_i = M \right\} .$$

Stochastic Becker Döring model

Reversible one-step coag.-frag.

g.-frag.

$$\begin{cases}
C_{i}(t) = C_{i}^{in} + J_{i-1}(t) - J_{i}(t), & i \ge 2 \\
J_{i}(t) = Y_{i}^{+} \left(\int_{0}^{t} p_{i}C_{1}(s)C_{i}(s)ds \right) \\
-Y_{i+1}^{-} \left(\int_{0}^{t} q_{i+1}C_{i+1}(s)ds \right) \\
C_{1}(t) = C_{1}^{in} - 2J_{1}(t) - \sum_{i\ge 2} J_{i}(t),
\end{cases}$$

Stochastic version : Finite-state space Markov Chain, in

$$X_M := \left\{ C = (C_i)_{i \ge 1} \in \mathbb{N}^{\mathbb{N}} : \sum_{i=1}^{\infty} iC_i = M \right\}.$$

Preserves mass for all times

$$\sum_{i=1}^{\infty} iC_i(t) = \sum_{i=1}^{\infty} iC_i(0) =: M.$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

Graph (M=5) at iter. 0

Transitions are given by

$$\mathcal{P}\left\{\begin{array}{c} C_1(t+dt) = C_1(t) - 2\\ C_2(t+dt) = C_2(t) + 1 \end{array}\right\} = p_1 C_1(t) (C_1(t) - 1) dt + o(dt)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

Graph (M=5) at iter. 0

Transitions are given by

$$\mathcal{P}\left\{\begin{array}{c} C_{1}(t+dt) = C_{1}(t) - 1\\ C_{i}(t+dt) = C_{i}(t) - 1\\ C_{i+1}(t+dt) = C_{i+1}(t) + 1\end{array}\right\} = p_{i}C_{1}(t)C_{i}(t)dt + o(dt)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

Graph (M=5) at iter. 0

Transitions are given by

$$\mathcal{P}\left\{\begin{array}{c} C_{1}(t+dt) = C_{1}(t) + 1\\ C_{i}(t+dt) = C_{i}(t) + 1\\ C_{i+1}(t+dt) = C_{i+1}(t) - 1\end{array}\right\} = q_{i+1}C_{i+1}(t)dt + o(dt)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

Graph (M=5) at iter. 1

Time interval between transition

$$T_{i+1} - T_i \sim \mathcal{E}\left(p_1 C_1 (C_1 - 1) + \sum_{i \ge 2} p_i C_1 C_i + q_i C_i\right)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xrightarrow[q_{i+1}]{p_i} C_{i+1}$$

Graph (M=5) at iter. 2

Time interval between transition

$$T_{i+1} - T_i \sim \mathcal{E}\left(p_1 C_1 (C_1 - 1) + \sum_{i \ge 2} p_i C_1 C_i + q_i C_i\right)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

Graph (M=5) at iter. 3

Time interval between transition

$$T_{i+1} - T_i \sim \mathcal{E}\left(p_1 C_1 (C_1 - 1) + \sum_{i \ge 2} p_i C_1 C_i + q_i C_i\right)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xrightarrow[q_{i+1}]{p_i} C_{i+1}$$

Graph (M=5) at iter. 4

Time interval between transition

$$T_{i+1} - T_i \sim \mathcal{E}\left(p_1 C_1 (C_1 - 1) + \sum_{i \ge 2} p_i C_1 C_i + q_i C_i\right)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xrightarrow[q_{i+1}]{p_i} C_{i+1}$$

Graph (M=5) at iter. 5

Time interval between transition

$$T_{i+1} - T_i \sim \mathcal{E}\left(p_1 C_1 (C_1 - 1) + \sum_{i \ge 2} p_i C_1 C_i + q_i C_i\right)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xrightarrow[q_{i+1}]{p_i} C_{i+1}$$

Graph (M=5) at iter. 6

Time interval between transition

$$T_{i+1} - T_i \sim \mathcal{E}\left(p_1 C_1 (C_1 - 1) + \sum_{i \ge 2} p_i C_1 C_i + q_i C_i\right)$$

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

1

$$C_i + C_1 \stackrel{p_i}{\underset{q_{i+1}}{\longleftarrow}} C_{i+1}$$

Graph (M=15) at iter. 0

$$X_{\mathcal{M}} := \left\{ C \in \mathbb{N}^{\mathbb{N}} : \sum_{i=1}^{\infty} iC_i = M \right\}$$

Drawback : exponential increase of the size of the state-space !

>

$$M \mid X_M \mid = \sum_{i=1}^M \sigma(i) \mid X_{M-i} \mid, \quad \mid X_M \mid \propto \frac{1}{4M\sqrt{3}} \exp\left(\pi\sqrt{\frac{2M}{3}}\right) \,,$$

where $\sigma(i)$ is the sum of the divisors of i

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$$

Due to detailed-balance, the asymptotic prob. distribution is

$$\Pi(C) = B_M \prod_{i=1}^{M} \frac{(Q_i)^{C_i}}{C_i!}, \quad Q_i = \frac{p_1 p_2 \cdots p_{i-1}}{q_2 q_3 \cdots q_i}$$

.

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$$

Due to detailed-balance, the asymptotic prob. distribution is

$$\Pi(C) = B_M \prod_{i=1}^M \frac{(Q_i)^{C_i}}{C_i!}, \quad Q_i = \frac{p_1 p_2 \cdots p_{i-1}}{q_2 q_3 \cdots q_i}.$$

The expected number of clusters of size i is

$$\mathbf{E}_{\Pi} C_i = Q_i B_M / B_{M-i}$$
, and $M B_M^{-1} = \sum_{i=1}^M i Q_i B_{M-i}^{-1}$.

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$$

Due to detailed-balance, the asymptotic prob. distribution is

$$\Pi(C) = B_M \prod_{i=1}^M \frac{(Q_i)^{C_i}}{C_i!}, \quad Q_i = \frac{p_1 p_2 \cdots p_{i-1}}{q_2 q_3 \cdots q_i}$$

The expected number of clusters of size *i* is

$$\mathbf{E}_{\Pi} C_i = Q_i B_M / B_{M-i}$$
, and $M B_M^{-1} = \sum_{i=1}^M i Q_i B_{M-i}^{-1}$.

Moreover, analogy with supercritical case in BD holds :

$$\left(\lim_{i\to\infty}\frac{p_i}{q_{i+1}}=z_s>0\right)\Rightarrow\left(\lim_{M\to\infty}\mathbf{E}_{\Pi}C_i=Q_iz_s^i\right)$$

- With the large volume scaling : $c_i^{\varepsilon} = \varepsilon C_i$, and $p_i = \varepsilon \overline{p}_i$, $q_i = \overline{q}_i$: Law of large numbers as $M \to \infty$ [Jeon, CMP (1998)]
- Any macroscopic quantity like

$$\inf\{t \ge 0 : \sum_{i \ge N} iC_i(t) \ge \rho M$$
$$| C_i(t=0) = M\delta_{i=1}\}.$$

converges (in standard scaling) to a finite deterministic value as $M \rightarrow \infty$.

- With the large volume scaling : $c_i^{\varepsilon} = \varepsilon C_i$, and $p_i = \varepsilon \overline{p}_i$, $q_i = \overline{q}_i$: Law of large numbers as $M \to \infty$ [Jeon, CMP (1998)]
- Any macroscopic quantity like

$$\inf\{t \ge 0 : \sum_{i \ge N} iC_i(t) \ge \rho M$$
$$| C_i(t=0) = M\delta_{i=1}\}.$$

converges (in standard scaling) to a finite deterministic value as $M \rightarrow \infty$.

 This may not be true for microscopic quantity, for instance.

$$\inf\{t \ge 0 : C_N(t) \ge 1$$
$$| C_i(t=0) = M\delta_{i=1}\}.$$

[Y., D'Orsogna, Chou JCP (2012)] [Y., Bernard, Hingant, Pujo-Menjouet JCP (2016)] Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time

Re-scaling reaction rates with MRe-scaling nucleus size with MBack to classical nucleation theory

How to explain large variability in $M \rightarrow \infty$?

Roughly speaking, due to the law of large number (+CLT), in order to obtain a positive variance in a continuous settings, one needs to avoid that the nucleation occurs in finite time in the limit $M \rightarrow \infty$.

• We seek situations (model, scaling) where the nucleation is a rare event, that do not occurs in the deterministic limit $M \rightarrow \infty$.

Coarse-Grained model

$$C_1, Y, Z \mapsto \left\{ \begin{array}{ccc} C_1 - n, Y + 1, Z + n & \text{at rate} & \alpha(C_1) \,, \\ C_1 - 1, Y, Z + 1 & \text{at rate} & pC_1Y \,, \\ C_1, Y + 1, Z & \text{at rate} & qZ \,. \end{array} \right.$$

Then, for "small α ", and large volume, the lag time is composed of the convolution of an Exponential variable of rate α and a deterministic time given by the ODE

$$\begin{cases} \frac{dc_1}{dt} = -pc_1y (-n\alpha(c_1)). \\ \frac{dy}{dt} = qz (+\alpha(c_1)), \quad y = \sum_{i \ge n} c_i, \\ \frac{dz}{dt} = pc_1y + (n\alpha(c_1)), \quad z = \sum_{i \ge n} ic_i. \end{cases}$$

Szavits-Nossan et al., PRL 113, 2014 $Y = \sum_{i>2} C_i, Z = \sum_{i>2} iC_i$

Coarse-Grained model

$$C_1, Z \mapsto \left\{ \begin{array}{ll} C_1 - 2, Z + 2 & \text{at rate} & \varepsilon^{\nu} \alpha(\varepsilon C_1)^2 \,, \\ C_1 - 1, Z + 1 & \text{at rate} & p(C_1 \varepsilon)(Z \varepsilon) \,. \end{array} \right.$$

Then, for $\nu > 1$, and $\varepsilon \rightarrow 0$, the lag time converges "essentially" to an exponential distribution (in the time scale $\varepsilon^{\nu} t$)

Doumic et al., SIAM J. App. Math., 76(6) (2016) $Z = \sum_{i \ge 2} iC_i$

$$\begin{cases} \frac{dc_1}{dt} = -pc_1 z \left(-2\alpha c_1^2\right).\\ \frac{dz}{dt} = pc_1 z \left(+2\alpha c_1^2\right), \quad z = \sum_{i \ge n} ic_i. \end{cases}$$

Coarse-Grained model

Adapted from *Eugène et al.,JCP*, 144(17), 2016 and Doumic et al., SIAM J. App. Math., 76(6) 2016

```
Then, for the
rescaled process
\varepsilon(C_1(t), C_1^*(t), Z(t))
we observ
"translated
trajectory" as
\varepsilon \rightarrow 0
```

Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

Y. et al., JCP, 144, 2016

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}/\varepsilon} C_{i+1}$$

Using pre-equilibrium hypothesis, in the unfavorable aggregation limit, the leading order of the first assembly time of a cluster of size N is

$$< T > \approx_{\varepsilon \to 0} \frac{1}{\varepsilon^{N-2}} \frac{\prod_{k=2}^{N-1} q_k}{\prod_{k=1}^{N-1} p_k \prod_{k=0}^{N-1} (M-k)}.$$

Also, in the asymptotic $\varepsilon \rightarrow 0$ the first assembly time T is an exponential distribution.

 This behavior can be used to couple a first part, very unfavorable, to a second part, favorable or irreversible

Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

Y. et al., JCP, 144, 2016

$$C_i + C_1 \xrightarrow[q_{i+1}/\varepsilon]{p_i} C_{i+1}$$

Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

Y. et al., JCP, 144, 2016

$$C_i + C_1 \xleftarrow{p_i}{q_{i+1}/\varepsilon} C_{i+1}$$

Large nucleus scaling

Reversible one-step coag.-frag.

$$\begin{split} f^{\varepsilon}(t,x) &= \sum_{i \ge 2} C_i^{\varepsilon}(t) \mathbf{1}_{[(i-1/2)\varepsilon,(i+1/2)\varepsilon)}(x) \\ \text{converges towards solution of} \\ &\frac{\partial f}{\partial t} + \frac{\partial (J(x,t)f(t,x))}{\partial x} = 0 \,, \end{split}$$

∂x

 $C_i + C_1 \xleftarrow{p_i}{q_{i+1}} C_{i+1}$ (+boundary condition, if needed) and $J(x,t) = p(x)c_1(t) - q(x).$

How can we obtain large assembly time in this scaling?

Large nucleus scaling

First case (p(0)m > q(0)) : Convergence towards a deterministic value.

case A

case B

Large nucleus $N \sim \sqrt{M}$

• Second case (p(0)M < q(0)) : Exponentially large time and 'translated' trajectory. (p(x) = x, q(x) = 0.1.)

Quantifying the rare event in a toy model

A much simpler version of this model consider that a **single** aggregate may be formed at a time :

which converges (with time rescaling) to

$$\frac{dx}{dt} = p(x)(m-x) - q(x)$$

Quantifying the rare event in a toy model

A much simpler version of this model consider that a **single** aggregate may be formed at a time :

$$i \stackrel{p_i(m-i\varepsilon)}{\underbrace{q_{i+1}}} i+1,$$

which converges (with time rescaling) to

$$\frac{dx}{dt} = p(x)(m-x) - q(x)$$

 To leading order the stationary prob. density is

$$u^{*}(x) = C \frac{e^{-\frac{1}{\varepsilon} \int^{x} \log\left(\frac{q(y)}{p(y)(m-y)}\right) dy}}{\sqrt{p(x)(m-x)q(x)}}$$

- MFPT is explicit and is exponentially large in ε
- The "rate" is exponentially small

Stochastic view of Classical Nucleation Theory

In the classical scaling from SBD to BD, with gelation coefficients $(\sup (\sum iQ_iz^i) = \rho_s < \infty)$, there is a phase transition in **finite** random time

The transition phase is abrupt and corresponds to the rapid formation of a **single** large cluster

Stochastic view of Classical Nucleation Theory

The transition phase is abrupt, occurs at a **random time** and corresponds to the rapid formation of a **single** large cluster

Rate scaling Size scaling CNT

Open Questions on Metastability in the (S)BD model

- Which initial conditions go through the metastable state? Completely open
- How long (and variable) is the metastable period? [Partial numerical answers in Y. et al, JCP 137 (2012), Y. et al, JCP 144 (2016)]
- ▶ How does the largest cluster size I_{max} behave as $M \to \infty$? [Partial answers in the literature : Niethammer, Penrose, Wattis, etc...
Summary

- A framework to include nucleation in continuous-size model
- A stochastic version of a classical model of nucleation
- Several scaling possibilities to obtain positive variance in the limit $M \rightarrow \infty$.
 - Rate scaling
 - Size scaling
 - Large time behavior (metastability)

Thanks for your attention !

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{c} (k_0, k_1) & \xrightarrow{p_{k_0}(m - (k_0 + k_1)\varepsilon)} \\ (k_0, k_1) & \xrightarrow{p_{k_1}(m - (k_0 + k_1)\varepsilon)} \\ \hline q_{k_1 + 1} \end{array} \quad (k_0, k_1 + 1) , \quad \underset{N}{\overset{0.8}{\underbrace{}}} \quad \underset{0.6}{\overset{0.8}{\underbrace{}}} \end{array}$$

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x)$$

$$\frac{dy}{dt} = p(y)(m-x-y) - q(y)$$

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{ccc} (k_0, k_1) & \xrightarrow{p_{k_0}(m - (k_0 + k_1)\varepsilon)} & (k_0 + 1, k_1) \,, \\ \hline & & & \\ (k_0, k_1) & \xrightarrow{p_{k_1}(m - (k_0 + k_1)\varepsilon)} & (k_0, k_1 + 1) \,, & \swarrow \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline \end{array}$$

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x)$$

$$\frac{dy}{dt} = p(y)(m-x-y) - q(y)$$

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x)$$

$$\frac{dy}{dt} = p(y)(m-x-y) - q(y)$$

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{c} (k_{0},k_{1}) & \xrightarrow{p_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)} \\ (k_{0},k_{1}) & \xrightarrow{p_{k_{1}}(m-(k_{0}+k_{1})\varepsilon)} \\ (k_{0},k_{1}) & \xrightarrow{p_{k_{1}}(m-(k_{0}+k_{1})\varepsilon)} \\ \hline \end{array} \\ (k_{0},k_{1}+1), & \overleftarrow{\frac{y_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)}{g_{k_{1}+1}}} \\ (k_{0},k_{1}+1), & \overleftarrow{\frac{y_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)}{g_{k_{0}+1}}} \\ \hline \end{array}$$

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x) \frac{dy}{dt} = p(y)(m-x-y) - q(y)$$

0.2

0.02

0.02 0.2 0.4 0.6 0.8

Size cluster 1

1

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{c} (k_{0},k_{1}) & \xrightarrow{p_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)} \\ (k_{0},k_{1}) & \xrightarrow{p_{k_{1}}(m-(k_{0}+k_{1})\varepsilon)} \\ (k_{0},k_{1}) & \xrightarrow{p_{k_{1}}(m-(k_{0}+k_{1})\varepsilon)} \\ q_{k_{1}+1} & (k_{0},k_{1}+1), \\ \end{array}$$
Time spent along trajectories
$$\begin{array}{c} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.4$$

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x) \frac{dy}{dt} = p(y)(m-x-y) - q(y)$$

Charles and a second

Size cluster 1

0.01 0.2 0.4 0.6 0.8

n cluster models

rescaling) to

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{c} (k_{0},k_{1}) & \xrightarrow{p_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)} \\ (k_{0},k_{1}) & \xrightarrow{q_{k_{1}+1}} \\ (k_{0},k_{1}) & \xrightarrow{q_{k_{1}+1}} \\ (k_{0},k_{1}) & \xrightarrow{q_{k_{1}+1}} \\ (k_{0},k_{1}+1), & \xrightarrow{q_{0}} \\ 0.8 \\ \hline g_{0} \\ 0.4 \\$$

 $\frac{dx}{dt} = p(x)(m-x-y) - q(x)$ $\frac{dy}{dt} = p(y)(m-x-y) - q(y)$

0.007 0.2 0.4 0.6 0.8 1 Size cluster 1

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{c} (k_{0},k_{1}) & \overbrace{\frac{p_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)}{q_{k_{0}+1}}}^{m} & (k_{0}+1,k_{1}), \\ (k_{0},k_{1}) & \overbrace{\frac{p_{k_{1}}(m-(k_{0}+k_{1})\varepsilon)}{q_{k_{1}+1}}}^{m} & (k_{0},k_{1}+1), \\ \end{array} \\ \begin{array}{c} \text{Time spent along trajectories} \\ 0.8 \\ 0.8 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.007 \\ 0.2 \\ 0.007$$

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x)$$

$$\frac{dy}{dt} = p(y)(m-x-y) - q(y)$$

0.005 0.2 0.4 0.6 0.8 1

Size cluster 1

n cluster models

Can we perform LDP calculations with *n* clusters?

$$\begin{array}{c} (k_{0},k_{1}) & \overbrace{\frac{p_{k_{0}}(m-(k_{0}+k_{1})\varepsilon)}{q_{k_{0}+1}}}^{m} & (k_{0}+1,k_{1}), \\ (k_{0},k_{1}) & \overbrace{\frac{p_{k_{1}}(m-(k_{0}+k_{1})\varepsilon)}{q_{k_{1}+1}}}^{m} & (k_{0},k_{1}+1), \\ \end{array} \\ \begin{array}{c} \text{Time spent along trajectories} \\ 0.8 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.05 \\ 0.2 \\ 0.05 \\$$

$$\frac{dx}{dt} = p(x)(m-x-y) - q(x)$$

$$\frac{dy}{dt} = p(y)(m-x-y) - q(y)$$