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Amyloid diseases and nucleation

Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model

Variability in nucleation time
Re-scaling reaction rates with M
Re-scaling nucleus size with M
Back to classical nucleation theory
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Protein accumulation in amyloid by nucleation-dependent
polymerization

Misfolding Prusiner model for prion

The early aggregation formation requires a series of association
steps that are thermodynamically unfavorable (with an dissociation
constant Kd " 1).
These aggregation steps are unfavorable up to a given size (that is
not currently known), which is referred to the nucleus size.
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Key questions

We want to study nucleation mechanism for in-vitro spontaneous
polymerization experiments of rPrP (kinetics monitored by
fluorescence intensity)

§ How to include nucleation in (macroscopic) model of protein
polymerization ?

§ How to explain large variability in nucleation lag time, despite
the large number of proteins ?
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Becker-Döring model

Reversible one-step
coagulation-fragmentation

Ci`C1
pi
ÝÝáâÝÝ
qi`1

Ci`1 , i “ 2 , , 3 , ¨ ¨ ¨

§ First used in the work Kinetic treatment of nucleation in
supersaturated vapors by physicists Becker and Döring (1935).

§ Traditionally used as an infinite set of Ordinary Differential
Equations. More recently used as a finite state-space Markov
Chain.
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Becker-Döring model

Reversible one-step
coagulation-fragmentation

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Ball, Carr, Penrose, Comm. Math. Phys
104(4), 1986

§ Purely kinetic model (law of mass-action) : no space, no
polymer structure (but size-dependent kinetic rates).

§ Indirect interaction between polymer Ci , i ě 2 via the
available number of monomers C1.

C1ptq `
ÿ

iě2

iCi ptq “ constant
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Becker-Döring model

Reversible one-step
coagulation-fragmentation

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Ball, Carr, Penrose, Comm. Math. Phys
104(4), 1986

§

§ Typical coefficient are derived from physical principles

pi “ iα , qi “ pi

´

zs `
q

iγ

¯

.
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Becker-Döring model

Reversible one-step coagulation-fragmentation

Set of kinetic reactions :

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1 , i ě 1 .

§ In spontaneous polymerization experiment,
§ Initial condition given by ci pt “ 0q “ 0 @i ě 2.
§ Measured variable :

ř

iěn iCi (n is an unknown parameter)
§ The (observed) nucleation time is given by

inftt ě 0 :
ÿ

iěn

iCi ptq ě δm | Ci pt “ 0q “ mδi“1u .

Another quantity of interest is the following First Passage
Time,

inftt ě 0 : CNptq ě 1 | Ci pt “ 0q “ mδi“1u .
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Deterministic Becker-Döring model

Reversible one-step
coagulation-fragmentation

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

$

’

’

’

&

’

’

’

%

dci
dt

“ Ji´1 ´ Ji , i ě 2 ,

Ji “ pic1ci ´ qi`1ci`1 , i ě 1 ,
dc1

dt
“ ´J1 ´

ř8
i“1 Ji .

§ Deterministic version : infinite system of ODEs.

§ Well-posedness theory for sublinear coefficients in

X “

#

pci qiě1 P RN
` :

ÿ

iě1

ici ă 8

+

§ Preserves mass for all times
8
ÿ

i“1

ici ptq “
8
ÿ

i“1

ici p0q “: m .
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Equilibrium of the BD model

$

’

’

’

&

’

’

’

%

dci
dt

“ Ji´1 ´ Ji , i ě 2 ,

Ji “ pic1ci ´ qi`1ci`1 , i ě 1 ,
dc1

dt
“ ´J1 ´

ř8
i“1 Ji .

Ball, Carr, Penrose, Comm.
Math. Phys 104(4), 1986

Equilibrium is given by Ji ” J “ 0, which implies

ci “ Qiz
i , Qi “

p1p2 ¨ ¨ ¨ pi´1

q2q3 ¨ ¨ ¨ qi

z is given by the mass at equilibrium,

mpzq :“
ÿ

iě1

iQiz
i

Is there a solution of

mpzq “? mp“
ÿ

iě1

ici ptqq
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Equilibrium of the BD model

$
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’
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’
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dci
dt

“ Ji´1 ´ Ji , i ě 2 ,

Ji “ pic1ci ´ qi`1ci`1 , i ě 1 ,
dc1

dt
“ ´J1 ´

ř8
i“1 Ji .

Ball, Carr, Penrose, Comm.
Math. Phys 104(4), 1986

If the serie mpzq “
ř

iě1 iQiz
i has a finite radius of convergence zs

and if
suptmpzq , z ă zsu “: ms ă 8 ,

then there is a critical mass such that there is no equilibrium with
mass m ą ms .
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Deterministic BD model and Classical Nucleation Theory

$

’

’

’

&

’

’

’

%

dci
dt

“ Ji´1 ´ Ji , i ě 2 ,

Ji “ pic1ci ´ qi`1ci`1 , i ě 1 ,
dc1

dt
“ ´J1 ´

ř8
i“1 Ji .

Ball, Carr, Penrose, Comm.
Math. Phys 104(4), 1986
Slemrod, Nonlinearity 2(3),
1989
Cañizo, Lods, J. Diff. Eqs.
255(5), 2013

If m ď ms , then (with strong convergence)

lim
tÑ8

ci ptq “ Qiz
i , mpzq “ m

If m ą ms , then (with weak convergence)

lim
tÑ8

ci ptq “ Qiz
i
s , m ´ms “ ”loss of mass to 8”

Remark
There is a Lyapounov function, given by

Hpcq “
ÿ

iě1

ci

ˆ

ln

ˆ

ci
Qi

˙

´ 1

˙

.
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Deterministic BD model and Classical Nucleation Theory

$

’

’

’

&

’

’
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%

dci
dt

“ Ji´1 ´ Ji , i ě 2 ,

Ji “ pic1ci ´ qi`1ci`1 , i ě 1 ,
dc1

dt
“ ´J1 ´

ř8
i“1 Ji .

Penrose, Comm. Math. Phys
124, 1989

There exist ”almost steady-states”, for which Ji ” J˚pmq ‰ 0. As
m Œ ms , if such steady-states are used as initial condition, then
the solution

§ (for finite t) ci ptq ´ ci p0q is exponentially small

§ limtÑ8 ci ptq ´ ci p0q is not exponentially small

Moreover J˚pmq is exponentially small

§ The new phase is being formed extremely slowly, after a
long metastable period.
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Deterministic BD model – Some remarks

§ For constant or linear kinetic rates pi , qi , one can reduce the
system to 1 or 2 ODEs on

c1 ,
ÿ

iě2

ci ,
ÿ

iě2

ici .

§ Based on scaling arguments, one can show that for qi “ 0
(irreversible nucleation),

inftt ě 0 : cnptq ě δm | ci pt “ 0q “ mδi“1u »
1

m
.

while for “qi Ñ82 (pre-equilibrium nucleation),

inftt ě 0 : cnptq ě δm | ci pt “ 0q “ mδi“1u »
1

mn
.
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Use of BD-like model in protein polymerization models

Irreversible nucleation step, ”Heaviside” rates
Powers & Powers,
Biophys. J. 91, 2006

For b " c :
pre-equilibrium
hypothesis.
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Use of BD-like model in protein polymerization models

pre-equilibrium nucleation step, constant rates

$

’

’
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’

’

%

dc1

dt
“ ´ppc1 ´ qqy , .

dy

dt
“ Kcn

1 p`Qpm ´ c1ptqqq ,

dz

dt
“ ppc1 ´ qqy , .

Ferrone et al., Bophys. J.
32, 1980

y “
ř

iěn ci
z “

ř

iěn ici
ppiq “ p, qpiq “ q
Q “ secondary
nucleation mechanism
(fragmentation,
heterogeneous
nucleation...)
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Use of BD-like model in protein polymerization models

pre-equilibrium nucleation,
polymerization-fragmentation, ”oligomers at 0”

$

’

’

’

’

&

’

’

’

’

%

dc1

dt
“ ´pc1

ÿ

iěn

ci ` 2q
n´1
ÿ

i“1

ÿ

jěi`1

icj ´ nKcn
1 .

dci
dt

“ pc1pci´1 ´ ci q ´ qpi ´ 1qci ` 2q
ÿ

jěi`1

cj ` Kcn
1 δi ,n , i ě n ,

Knowles et al., Science
326, 2009

Approximate analytical
solution.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dc1

dt
“ ´pc1y ` npn ´ 1qqy ´ nKcn

1 .

dy

dt
“ qz ´ p2n ´ 1qqy ` Kcn

1 , y “
ÿ

iěn

ci ,

dz

dt
“ pc1y ´ npn ´ 1qqy ` nKcn

1 , z “
ÿ

iěn

ici .
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Use of BD-like model in protein polymerization models

Continuous approximation, nucleation as a
boundary condition

$

’

’

’

&

’

’

’

%

Bf px , tq

Bt
` c1ptq

Bppxqf px , tq

Bx
“ r¨ ¨ ¨ s .

c1ptqppx0qf px0, tq “ Npc1ptqq ,
dc1

dt
“ λ´ γc1 ´ nNpc1q ´ c1

ż 8

x0

ppxqf px , tqdx ,

Helal et al., J. Math.
Biol., 2013

f pt, xq=number of
polymer size x
Npc1q “ αcn

1
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Use of BD-like model in protein polymerization models

Continuous approximation, nucleation as a
boundary condition

$

’

&

’

%

Bf px , tq

Bt
`
Bpppxqc1ptq ´ qpxqqf px , tq

Bx
“ r¨ ¨ ¨ s .

ppx0qf px0, tq “ ppx0q
pNc1ptq

n

qN ` ppx0qc1ptq
,

Prigent et al., Plos One,
7, 2012
Banks et al., J. Math.
Biol., 74, 2017
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Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε2 “ 1{m)
$

’

&

’

%

dcεi
dt

“
1

ε

“

Jεi´1 ´ Jεi
‰

, i ě 2 ,

mε “ cε1ptq ` ε
2
ÿ

iě2

icεi ptq .

Scaling idea : excess of monomer, time scale “ 1{ε

cε1ptq :“ ε2c1pt{εq , cεi ptq :“ ci pt{εq

Compensated aggregation / fragmentation

pεi :“
pi
ε2
, qεi :“ qi , Jεi “ pεi cε1cεi ´ qεi`1cεi`1

and slow first step :

pε1 :“
p1

ε4
,
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Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε2 “ 1{m)
$

’

&

’

%

dcεi
dt

“
1

ε

“

Jεi´1 ´ Jεi
‰

, i ě 2 ,

mε “ cε1ptq ` ε
2
ÿ

iě2

icεi ptq .

From the polymer point of view, we have accelerated fluxes, all of
the same order :

1
ε
pε1C

ε
1 C

ε
1

ÝÝÝÝÝÝáâÝÝÝÝÝÝ
1
ε
qε2C

ε
2

C ε
2

C ε
i´1

1
ε
pεpεpi´1qqCε1 C

ε
i´1

ÝÝÝÝÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝÝÝÝÝ
1
ε
qεpεiqCεi

C ε
i

1
ε
pεpεiqCε1 C

ε
i

ÝÝÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝÝÝ
1
ε
qεpεpi`1qqCεi`1

C ε
i`1,
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Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε2 “ 1{m)
$

’

&

’

%

dcεi
dt

“
1

ε

“

Jεi´1 ´ Jεi
‰

, i ě 2 ,

mε “ cε1ptq ` ε
2
ÿ

iě2

icεi ptq .

Weak form : for any test function (ϕi ),

d

dt

ÿ

iě2

cεi ϕi “
1

ε
Jε2ϕ2 `

ÿ

iě3

Jεi

„

ϕi`1 ´ ϕi

ε



.
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Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε2 “ 1{m)
$

’

&

’

%

dcεi
dt

“
1

ε

“

Jεi´1 ´ Jεi
‰

, i ě 2 ,

mε “ cε1ptq ` ε
2
ÿ

iě2

icεi ptq .

f εpt, xq “
ř

iě2 cε
i ptq1rpi´1{2qε,pi`1{2qεqpxq, ϕi “

şpi`1{2qε

pi´1{2qε
ϕpxqdx ,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

d

dt

ż `8

0

f εpt, xqϕpxq dx “
“

pε
1cε

1 ptq
2 ´ qε

2cε
2 ptq

‰

˜

1

ε

ż 5{2ε

3{2ε

ϕpxq dx

¸

`

ż `8

0

Jεpt, xq∆εϕpxq dx ,

mε “ cε
1 ptq `

ż `8

0

xf εpt, xq dx .

where ∆εϕpxq “
ϕpx`εq´ϕpxq

ε and Jεpt, xq “ .pεpxqcε
1 ptqf

εpt, xq´qεpx `
εqf εpt, x ` εq
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d

dt

ż `8

0
f εpt, xqϕpxq dx “

“

pε1cε1ptq
2 ´ qε2cε2ptq

‰

˜

1

ε

ż 5{2ε

3{2ε
ϕpxq dx

¸

`

ż `8

0
rpεpxqcε1ptqf

εpt, xq∆εϕpxq ´ qεpxqf εpt, xq∆´εϕpxqs dx ,

Theorem (Deschamps, Hingant, Y. (2016))

We suppose :

§ Control and convergence of rate functions

§ Control and convergence of initial condition

§ ppxq „ px rp , qpxq „ qx rq near x “ 0, and rq ě rp.

§ c1p0q ą ρ :“ limxÑ0 qpxq{ppxq
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d

dt

ż `8

0
f εpt, xqϕpxq dx “

“

pε1cε1ptq
2 ´ qε2cε2ptq

‰

˜

1

ε

ż 5{2ε

3{2ε
ϕpxq dx

¸

`

ż `8

0
rpεpxqcε1ptqf

εpt, xq∆εϕpxq ´ qεpxqf εpt, xq∆´εϕpxqs dx ,

Theorem (Deschamps, Hingant, Y. (2016))

we have f ε Ñ f (in C pr0,T s; w ´ ˚ ´Mpr0,8qqq) solution of

d

dt

ż `8

0
f pt, xqϕpxq dx “ Nptqϕp0q

`

ż `8

0
rppxqc1ptq ´ qpxqsϕ1pxqf pt, xq dx ,

for all ϕ P C0r0,8q, which is the weak form of

Bf

Bt
`
BpJpx , tqf pt, xqq

Bx
“ 0 , lim

xÑ0
Jpx , tqf pt, xq “ Nptq .
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d

dt

ż `8

0
f εpt, xqϕpxq dx “

“

pε1cε1ptq
2 ´ qε2cε2ptq

‰

˜

1

ε

ż 5{2ε

3{2ε
ϕpxq dx

¸

`

ż `8

0
rpεpxqcε1ptqf

εpt, xq∆εϕpxq ´ qεpxqf εpt, xq∆´εϕpxqs dx ,

Theorem (Deschamps, Hingant, Y. (2016))

Nptq is an explicit function of c1ptq, and is given by a quasi steady-
state approximation of cε2 “ f εpt, 2εq, given by the solution of

$

’

&

’

%

0 “ rJi´1pc1q ´ Ji pc1qs , i ě 2 ,

c1ptq “ c1 .

Ji pc1q “ pi rpc1 ´ qpi ` 1qrq1rp“rq .

When c1 ą limxÑ0
qpxq
ppxq , the solution of Ji ” J ‰ 0 is linked to the

loss of mass in the classical BD theory.
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Exemples

§ For rp ă rq, we get Npc1q “ αc2
1 , and

lim
xÑ0`

x rp f pt, xq “
α

p
c1ptq .

§ For rp “ rq, we get Npc1q “
α
p c1ppc1 ´ qq, and

lim
xÑ0`

x rp f pt, xq “
α

p
c1ptq .

§ For faster fragmentation rate qε2, we may get
Npc1q “ αc2

1
pc1

pc1`q2
and

lim
xÑ0`

x rp f pt, xq “ αc1ptq
c1ptq

pc1ptq ` q2
,

or Npc1q “ 0, and

lim
xÑ0`

x rp f pt, xq “ 0 .
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Stochastic Becker Döring model

Reversible one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Ci ptq “ C in
i ` Ji´1ptq ´ Ji ptq , i ě 2 ,

Ji ptq “ Y`
i

´

ż t

0
piC1psqCi psqds

¯

´Y´
i`1

´

ż t

0
qi`1Ci`1psqds

¯

C1ptq “ C in
1 ´ 2J1ptq ´

ÿ

iě2

Ji ptq ,

§ Stochastic version : Finite-state space Markov Chain, in

XM :“

#

C “ pCi qiě1 P NN :
8
ÿ

i“1

iCi “ M

+

.

§ Preserves mass for all times
8
ÿ

i“1

iCi ptq “
8
ÿ

i“1

iCi p0q “: M .
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qi`1
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’

’

&

’

’

’

’

’

’

’

’

%

Ci ptq “ C in
i ` Ji´1ptq ´ Ji ptq , i ě 2 ,

Ji ptq “ Y`
i

´

ż t

0
piC1psqCi psqds

¯

´Y´
i`1

´

ż t

0
qi`1Ci`1psqds

¯

C1ptq “ C in
1 ´ 2J1ptq ´

ÿ

iě2

Ji ptq ,

§ Stochastic version : Finite-state space Markov Chain, in

XM :“

#

C “ pCi qiě1 P NN :
8
ÿ

i“1

iCi “ M

+

.

§ Preserves mass for all times
8
ÿ

i“1

iCi ptq “
8
ÿ

i“1

iCi p0q “: M .
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Stochastic Becker-Döring model

Reversible one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Transitions are given by

P
"

C1pt ` dtq “ C1ptq ´ 2
C2pt ` dtq “ C2ptq ` 1

*

“ p1C1ptqpC1ptq ´ 1qdt ` opdtq
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Stochastic Becker-Döring model

Reversible one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Transitions are given by

P

$

&

%

C1pt ` dtq “ C1ptq ´ 1
Ci pt ` dtq “ Ci ptq ´ 1

Ci`1pt ` dtq “ Ci`1ptq ` 1

,

.

-

“ piC1ptqCi ptqdt ` opdtq
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Stochastic Becker-Döring model

Reversible one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Transitions are given by

P

$

&

%

C1pt ` dtq “ C1ptq ` 1
Ci pt ` dtq “ Ci ptq ` 1

Ci`1pt ` dtq “ Ci`1ptq ´ 1

,

.

-

“ qi`1Ci`1ptqdt ` opdtq
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Stochastic Becker-Döring model

Reversible one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Time interval between transition

Ti`1 ´ Ti „ E

˜

p1C1pC1 ´ 1q `
ÿ

iě2

piC1Ci ` qiCi

¸

A given transition is selected at random according to its weight.
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Stochastic Becker-Döring model

Reversible one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

XM :“

#

C P NN :
8
ÿ

i“1

iCi “ M

+

.

Drawback : exponential increase of the size of the state-space !

M | XM |“

M
ÿ

i“1

σpiq | XM´i | , | XM | 9
1

4M
?

3
exp

˜

π

c

2M

3

¸

,

where σpiq is the sum of the divisors of i
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Stochastic Becker-Döring model

Reversible one-step coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Due to detailed-balance, the asymptotic prob. distribution is

ΠpC q “ BM

M
ź

i“1

pQi q
Ci

Ci !
, Qi “

p1p2 ¨ ¨ ¨ pi´1

q2q3 ¨ ¨ ¨ qi
.
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Stochastic Becker-Döring model

Reversible one-step coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Due to detailed-balance, the asymptotic prob. distribution is

ΠpC q “ BM

M
ź

i“1

pQi q
Ci

Ci !
, Qi “

p1p2 ¨ ¨ ¨ pi´1

q2q3 ¨ ¨ ¨ qi
.

The expected number of clusters of size i is

EΠCi “ QiBM{BM´i , and MB´1
M “

M
ÿ

i“1

iQiB
´1
M´i .
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Stochastic Becker-Döring model

Reversible one-step coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

Due to detailed-balance, the asymptotic prob. distribution is

ΠpC q “ BM

M
ź

i“1

pQi q
Ci

Ci !
, Qi “

p1p2 ¨ ¨ ¨ pi´1

q2q3 ¨ ¨ ¨ qi
.

The expected number of clusters of size i is

EΠCi “ QiBM{BM´i , and MB´1
M “

M
ÿ

i“1

iQiB
´1
M´i .

Moreover, analogy with supercritical case in BD holds :
ˆ

lim
iÑ8

pi
qi`1

“ zs ą 0

˙

ñ

ˆ

lim
MÑ8

EΠCi “ Qiz
i
s

˙
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§ With the large volume scaling :
cεi “ εCi , and pi “ εpi ,
qi “ qi : Law of large numbers
as M Ñ8 [Jeon, CMP (1998)]

§ Any macroscopic quantity like

inftt ě 0 :
ÿ

iěN

iCi ptq ě ρM

| Ci pt “ 0q “ Mδi“1u .

converges (in standard scaling)
to a finite deterministic value as
M Ñ8.
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§ With the large volume scaling :
cεi “ εCi , and pi “ εpi ,
qi “ qi : Law of large numbers
as M Ñ8 [Jeon, CMP (1998)]

§ Any macroscopic quantity like

inftt ě 0 :
ÿ

iěN

iCi ptq ě ρM

| Ci pt “ 0q “ Mδi“1u .

converges (in standard scaling)
to a finite deterministic value as
M Ñ8.

§ This may not be true for
microscopic quantity, for instance.

inftt ě 0 : CNptq ě 1

| Ci pt “ 0q “ Mδi“1u .

[Y., D’Orsogna, Chou JCP
(2012)]

[Y., Bernard, Hingant,

Pujo-Menjouet JCP (2016)]
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Becker-Döring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Döring model
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Re-scaling reaction rates with M
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Back to classical nucleation theory
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How to explain large variability in M Ñ 8 ?

Roughly speaking, due to the law of large number (+CLT), in order
to obtain a positive variance in a continuous settings, one needs to
avoid that the nucleation occurs in finite time in the limit M Ñ8.

§ We seek situations (model, scaling) where the nucleation is a
rare event, that do not occurs in the deterministic limit
M Ñ8.
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Coarse-Grained model

C1,Y ,Z ÞÑ

$

&

%

C1 ´ n,Y ` 1,Z ` n at rate αpC1q ,
C1 ´ 1,Y ,Z ` 1 at rate pC1Y ,

C1,Y ` 1,Z at rate qZ .

Then, for ”small α”, and large
volume, the lag time is composed of
the convolution of an Exponential
variable of rate α and a
deterministic time given by the ODE

Szavits-Nossan et al., PRL 113,
2014
Y “

ř

iě2 Ci , Z “
ř

iě2 iCi

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dc1

dt
“ ´pc1y p´nαpc1qq .

dy

dt
“ qz p`αpc1qq , y “

ÿ

iěn

ci ,

dz

dt
“ pc1y `pnαpc1qq , z “

ÿ

iěn

ici .



Motivation BD Coarse-graining SBD Variability Rate scaling Size scaling CNT

Coarse-Grained model

C1,Z ÞÑ

"

C1 ´ 2,Z ` 2 at rate εναpεC1q
2 ,

C1 ´ 1,Z ` 1 at rate ppC1εqpZεq .

Then, for ν ą 1, and εÑ 0, the lag
time converges ”essentially” to an
exponential distribution (in the time
scale ενt)

Doumic et al., SIAM J. App.
Math., 76(6) (2016)
Z “

ř

iě2 iCi

$

’

’

&

’

’

%

dc1

dt
“ ´pc1z p´2αc2

1 q .

dz

dt
“ pc1z p`2αc2

1 q , z “
ÿ

iěn

ici .
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Coarse-Grained model

$

’

’

&

’

’

%

C1
γ

ÝÝÝáâÝÝÝ
γ˚{εν

C˚1 ,

C˚1 ` C˚1
εα
ÝÑ 2Z ,

C1 ` Z
εp
ÝÑ 2Z ,

Adapted from Eugène et al.,JCP,
144(17), 2016
and Doumic et al., SIAM J. App.
Math., 76(6) 2016

Then, for the
rescaled process
εpC1ptq,C

˚
1 ptq,Z ptqq,

we observ
”translated
trajectory” as
εÑ 0
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Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

Ci ` C1
pi

ÝÝÝÝáâÝÝÝÝ
qi`1{ε

Ci`1

Y. et al., JCP, 144, 2016

Using pre-equilibrium hypothesis, in the unfavorable aggregation
limit, the leading order of the first assembly time of a cluster of
size N is

ă T ą«εÑ0
1

εN´2

śN´1
k“2 qk

śN´1
k“1 pk

śN´1
k“0 pM ´ kq

.

Also, in the asymptotic εÑ 0 the first assembly time T is an
exponential distribution.

§ This behavior can be used to couple a first part, very
unfavorable, to a second part, favorable or irreversible
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Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

Ci ` C1
pi

ÝÝÝÝáâÝÝÝÝ
qi`1{ε

Ci`1

Y. et al., JCP, 144, 2016
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Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

Ci ` C1
pi

ÝÝÝÝáâÝÝÝÝ
qi`1{ε

Ci`1

Y. et al., JCP, 144, 2016
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Large nucleus scaling

Reversible
one-step
coag.-frag.

Ci ` C1
pi
ÝÝáâÝÝ
qi`1

Ci`1

f εpt, xq “
ř

iě2 C ε
i ptq1rpi´1{2qε,pi`1{2qεqpxq

converges towards solution of

Bf

Bt
`
BpJpx , tqf pt, xqq

Bx
“ 0 ,

(+boundary condition, if needed) and

Jpx , tq “ ppxqc1ptq ´ qpxq .

§ How can we obtain large assembly time in this scaling ?
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Large nucleus scaling

§ First case (pp0qm ą qp0q) : Convergence towards a
deterministic value.

§ case A § case B
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Large nucleus N „
?
M

§ Second case (pp0qM ă qp0q) : Exponentially large time and
’translated’ trajectory. ( ppxq “ x , qpxq “ 0.1.)
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Quantifying the rare event in a toy model

A much simpler version of this model consider that a single
aggregate may be formed at a time :

i
pi pm´iεq
ÝÝÝÝÝáâÝÝÝÝÝ

qi`1

i ` 1 ,

which converges (with
time rescaling) to

dx

dt
“ ppxqpm ´ xq ´ qpxq

(m “ 1, ppxq “ x , qpxq “ 0.1)
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Quantifying the rare event in a toy model

A much simpler version of this model consider that a single
aggregate may be formed at a time :

i
pi pm´iεq
ÝÝÝÝÝáâÝÝÝÝÝ

qi`1

i ` 1 ,

which converges (with
time rescaling) to

dx

dt
“ ppxqpm ´ xq ´ qpxq

§ To leading order the stationary
prob. density is

u˚pxq “ C
e
´ 1
ε

şx log
´

qpyq
ppyqpm´yq

¯

dy

a

ppxqpm ´ xqqpxq
.

§ MFPT is explicit and is
exponentially large in ε

§ The “rate” is exponentially small
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Stochastic view of Classical Nucleation Theory

In the classical scaling from SBD to BD, with gelation coefficients
(sup

`
ř

iQiz
i
˘

“ ρs ă 8), there is a phase transition in finite
random time

The transition phase is abrupt and corresponds to the rapid
formation of a single large cluster



Motivation BD Coarse-graining SBD Variability Rate scaling Size scaling CNT

Stochastic view of Classical Nucleation Theory

The transition phase is abrupt, occurs at a random time and
corresponds to the rapid formation of a single large cluster
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Open Questions on Metastability in the (S)BD model

Schweitzler et al., Physica A, 150,
1988

§ Which initial conditions go through the metastable state ?
Completely open

§ How long (and variable) is the metastable period ? [Partial numerical
answers in Y. et al, JCP 137 (2012), Y. et al, JCP 144 (2016)]

§ How does the largest cluster size Imax behave as M Ñ8 ? [Partial
answers in the literature : Niethammer, Penrose, Wattis, etc...
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Summary

§ A framework to include nucleation in continuous-size model

§ A stochastic version of a classical model of nucleation
§ Several scaling possibilities to obtain positive variance in the

limit M Ñ8.
§ Rate scaling
§ Size scaling
§ Large time behavior (metastability)

Thanks for your attention !



Motivation BD Coarse-graining SBD Variability Rate scaling Size scaling CNT

n cluster models

Can we perform LDP calculations with n clusters ?

pk0, k1q
pk0
pm´pk0`k1qεq

ÝÝÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝÝÝ
qk0`1

pk0 ` 1, k1q ,

pk0, k1q
pk1
pm´pk0`k1qεq

ÝÝÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝÝÝ
qk1`1

pk0, k1 ` 1q ,

which converges (with time
rescaling) to

dx

dt
“ ppxqpm ´ x ´ yq ´ qpxq

dy

dt
“ ppyqpm ´ x ´ yq ´ qpyq
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