Bursting in gene expression model

Romain Yvinec¹, Michael C. Mackey², Marta Tyran-Kamińska³, Changjiing Zhuge⁴, Jinzhi Lei⁴

¹BIOS group, INRA Tours, France. ²McGill University, Canada.

³University of Silesia, Poland.

⁴Tsinghua University, China.

Goodwin's model Stochastic model inverse pb With division

Hi Khanh!

Goodwin's deterministic model

Stochastic gene expression model : forward problem

Stochastic gene expression model : inference

Taking into account division

Goodwin (1965), Griffith (1968), Othmer (1976), Selgrade (1979)...

The transcription rate function λ_1

► **Inducible Operon**: Repressors *R* interacts with both the Operator *O* and the Effector *E*,

$$R + nE \stackrel{K_1}{\rightleftharpoons} RE_n$$
, $K_1 = \frac{RE_n}{R \cdot E^n}$, $O + R \stackrel{K_2}{\rightleftharpoons} OR$, $K_2 = \frac{OR}{O \cdot R}$.

With **QSSA**, and if $O_{tot} \ll R_{tot}$,

$$\lambda_1(E) \sim \frac{O}{O_{tot}} = \frac{1 + K_1 E^n}{1 + K_2 R_{tot} + K_1 E^n}.$$
 (1)

Repressible Operon : Similar but

$$O + RE^n \stackrel{K_2}{\rightleftharpoons} ORE_n$$
, $K_2 = \frac{ORE_n}{O \cdot RE^n}$.

and we get

$$\lambda_1(E) \sim \frac{O}{O_{tot}} = \frac{1 + K_1 E^n}{1 + (K_1 + K_2 R_{tot}) E^n}.$$

Bifurcation analysis in ODE

- Inducible (K > 1):
 Mono-stability or
 Bi-stability.
- Repressible (K < 1):</p>
 Mono-stability or limit cycle.

$$\begin{cases} \frac{dx_1}{dt} &= \gamma_1 [\lambda_1(x_3) - x_1], \\ \frac{dx_2}{dt} &= \gamma_2(x_1 - x_2), \\ \frac{dx_3}{dt} &= \gamma_3(x_2 - x_3). \end{cases}$$

Here
$$\lambda_1(x) = \kappa_d \frac{1 + x^n}{K + x^n}$$
.

Eldar and Elowitz (Nature 2010)

→ ODEs are forbidden!

'New' Central dogma

Rigney & Schieve (1977), Berg (1978), Peccoud & Ycart (1995), Thattai & Van Oudenaarden (2001)...

Can we perform a systematic bifurcation theory on such systems?

- We are interested in long time behavior.
- We want to know how many modes has the stationary distribution.
- This requires in practice 'analytical' solution.

Can we perform a systematic bifurcation theory on such systems?

- We are interested in long time behavior.
- We want to know how many modes has the stationary distribution.
- This requires in practice 'analytical' solution.
- → I don't know how to do it, let's reduce the model!

A subclass of the 'three-stage' (DNA, mRNA, Protein) model is the 1D-bursting model (Storage model)

$$Lf(x) = \underbrace{-\gamma(x)f'(x)}_{\text{degradation}} + \underbrace{\lambda(x)\int_{0}^{\infty}(f(x+y) - f(x))h(x,y)dy}_{\text{bursting}}$$

where

- γ : degradation rate (deterministic drift)
- λ : bursting rate (jump intensity)
- ▶ h: bursting size distribution (jump size), $\int_0^\infty h(x,y)dy = 1$.

Time-dependent probability density u(x, t) satisfies

$$\frac{\partial u(x,t)}{\partial t} - \frac{\partial (\gamma(x)u(x,t))}{\partial x} = -\lambda(x)u(x,t) + \int_0^x \lambda(y)h(y,x-y)u(t,y)dy$$
degradation
$$\frac{\partial u(x,t)}{\partial t} - \frac{\partial (\gamma(x)u(x,t))}{\partial x} = -\lambda(x)u(x,t) + \int_0^x \lambda(y)h(y,x-y)u(t,y)dy$$

$$Lf(x) = \underbrace{-\gamma(x)f'(x)}_{\text{degradation}} + \underbrace{\lambda(x)\int_{0}^{\infty}(f(x+y)-f(x))h(x,y)dy}_{\text{bursting}}$$

Typical example for h is given by the exponential distribution , with jump size independent of the starting point,

$$h(x,y) = \frac{1}{b} \exp(-y/b)$$
, $\int yh(x,y)dy = b$.

Any stationary distribution u^* satisfies

$$\int_0^\infty Lf(x)u^*(x)dx = 0, \ \forall \text{ (suitable) test function } f$$
 (3)

 \rightarrow it seems difficult to solve (3) for "general" h

$$Lf(x) = \underbrace{-\gamma(x)f'(x)}_{\text{degradation}} + \underbrace{\lambda(x)\int_{0}^{\infty}(f(x+y)-f(x))h(x,y)dy}_{\text{bursting}}$$

If h is generalized exp. distribution with "x-dependent" burst size,

$$h(x,y) = -\frac{\nu'(x+y)}{\nu(x)}, \nu \searrow 0,$$

$$h(x,y) = \frac{1}{b(x+y)} \exp\left(-\int_{x}^{x+y} 1/b(z)\right), \nu(x) = \exp\left(-\int_{x}^{x} 1/b(z)dz\right)$$

then any stationary distribution u^* satisfies

$$\int_0^\infty \left[-\gamma(x)u^*(x) + \nu(x) \int_0^x \frac{\lambda(y)}{\nu(y)} u^*(y) dy \right] f'(x) dx = 0.$$

which leads to

$$u^*(x) = \frac{\nu(x)}{C\gamma(x)} \exp\left(\int^x \frac{\lambda(y)}{\gamma(y)} dy\right)$$

If $\gamma > 0$ is continuous, $\int_0^\delta \frac{1}{\gamma} dx = \infty$, $\nu > 0$ abs. C^0 , $\nu \searrow 0$

$$\int_0^\infty \frac{\nu(x)}{\gamma(x)} e^{\int^x \frac{\lambda(y)}{\gamma(y)} dy} dx < \infty, \quad \text{and} \quad \int_0^\infty (-\nu'(x)) e^{\int^x \frac{\lambda(y)}{\gamma(y)} dy} dx < \infty,$$

then u(t,x) converges (for any initial density) towards u^* , e.g.

$$\int_0^\infty |u(t,x) - u^*(x)| dx \to 0, \text{ as } t \to \infty.$$

If $\gamma>0$ is continuous, $\int_0^\delta \frac{1}{\gamma} dx = \infty$, $\nu>0$ abs. C^0 , $\nu \searrow 0$

$$\int_0^\infty \frac{\nu(x)}{\gamma(x)} e^{\int_0^x \frac{\lambda(y)}{\gamma(y)} dy} dx < \infty, \quad \text{and} \quad \int_0^\infty (-\nu'(x)) e^{\int_0^x \frac{\lambda(y)}{\gamma(y)} dy} dx < \infty,$$

then u(t,x) converges (for any initial density) towards u^* , e.g.

$$\int_0^\infty |u(t,x) - u^*(x)| dx \to 0, \text{ as } t \to \infty.$$

ightarrow The proof is based on Foguel's alternative : roughly, if all states communicate, then either you have either convergence or 'escape'.

If $\gamma>0$ is continuous, $\int_0^\delta \frac{1}{\gamma} dx=\infty$, $\nu>0$ abs. C^0 , $\nu\searrow 0$

$$\int_0^\infty \frac{\nu(x)}{\gamma(x)} e^{\int^x \frac{\lambda(y)}{\gamma(y)} dy} dx < \infty, \quad \text{and} \quad \int_0^\infty (-\nu'(x)) e^{\int^x \frac{\lambda(y)}{\gamma(y)} dy} dx < \infty,$$

then u(t,x) converges (for any initial density) towards u^* , e.g.

$$\int_0^\infty |u(t,x) - u^*(x)| dx \to 0, \text{ as } t \to \infty.$$

Remark

If the first integral is infinite, then the process 'escape' towards 0 or ∞ (in infinite time). If the second integral is infinite, there is explosion in finite time.

If $\gamma>0$ is continuous, $\int_0^\delta \frac{1}{\gamma} dx=\infty$, $\nu>0$ abs. C^0 , $\nu\searrow 0$

$$\int_0^\infty \frac{\nu(x)}{\gamma(x)} e^{\int^x \frac{\lambda(y)}{\gamma(y)} \, dy} \, dx < \infty, \quad \text{and} \quad \int_0^\infty (-\nu'(x)) e^{\int^x \frac{\lambda(y)}{\gamma(y)} \, dy} \, dx < \infty,$$

then u(t,x) converges (for any initial density) towards u^* , e.g.

$$\int_0^\infty |u(t,x) - u^*(x)| dx \to 0, \text{ as } t \to \infty.$$

Remark

Under different conditions, one may prove exponential convergence (even for 'general' h) without explicit u^* (cf Meyn-Tweedie approach).

Stationary distribution $(\lambda, \gamma, \nu) \Rightarrow (u^*)$

$$u^*(x) = \frac{\nu(x)}{C\gamma(x)} \exp\left(\int^x \frac{\lambda(y)}{\gamma(y)} dy\right)$$

Here
$$\lambda(x) = \kappa_b \frac{1 + x^n}{K + x^n}$$
 and $\nu(x) = \exp(-x/b)$.

Bifurcation analysis in SDE

- Inducible: Uni-modal or Bi-modal.
- Repressible : Uni-modal.

$$u^*(x) = \frac{\nu(x)}{C\gamma(x)} \exp\left(\int^x \frac{\lambda(y)}{\gamma(y)} dy\right)$$

$$\frac{du^*}{dx} = \left[\lambda(x) - \gamma(1 + \frac{x}{b})\right] \frac{u^*(x)}{\gamma x}.$$
 with $\nu(x) = \exp(-x/b)$ and $\gamma(x) = \gamma x$.

 Careful! The two notions of deterministic bistability and 'stochastic bistability' (bimodality) are in fact *quiet different*

 Careful! The two notions of deterministic bistability and 'stochastic bistability' (bimodality) are in fact quiet different

• (mean) Switching time : can quantify the 'stability' of each state. MFPT are also explicit if $h(x,y) = \frac{1}{b(x+y)} \exp\left(-\int_x^{x+y} 1/b(z)\right)$

For $x < x_0$, the MFPT to reach a **lower** level x from x_0 is

$$V_{I,x}(x_0) = \int_x^{x_0} \frac{1}{\gamma(y)} dy + \int_x^{x_0} \frac{\lambda(y)}{\gamma(y)\nu(y)} \int_y^{\infty} \frac{\nu(w)}{\gamma(w)} e^{Q(y)-Q(w)} dw dy$$

For $z > x_0$. The MFPT to reach a **higher** level z from x_0 is

$$V_{u,z}(x_0) = \int_0^z \frac{\nu(y)}{\gamma(y)\nu(z)} e^{Q(z) - Q(y)} dy - \int_{x_0}^z \frac{1}{\gamma(y)} dy + \int_{x_0}^z \frac{\lambda(y)}{\gamma(y)\nu(y)} \int_0^y \frac{\nu(w)}{\gamma(w)} e^{Q(y) - Q(w)} dw dy$$

Remark

FPT are strongly asymmetric here.

The mean waiting time is non-monotonic with respect to the bursting rate (even for fixed mean).

From the 3-stage to the bursting model?

$$\begin{cases}
\frac{dx}{dt} &= G(t)\lambda_{1}(y(t)) - \gamma_{1}x(t), \\
\frac{dy}{dt} &= \lambda_{2}x(t) - \gamma_{2}y(t), \\
(G = 0) &\xrightarrow{\beta(y(t))} (G = 1).
\end{cases}$$
(4)

If the mRNA lifetime si short $(\gamma_1 \to \infty)$, we can perform an adiabatic reduction $(x(t) \approx G(t) \frac{\lambda_1}{\gamma_1}(y(t)))$:

$$\begin{cases}
\frac{dy}{dt} = G(t) \frac{\lambda_2 \lambda_1}{\gamma_1} (y(t)) - \gamma_2 y(t), \\
(G = 0) \xrightarrow{\beta(y(t))} (G = 1).
\end{cases} (5)$$

$$\begin{cases}
\frac{dy}{dt} = G(t) \frac{\lambda_2 \lambda_1}{\gamma_1} (y(t)) - \gamma_2 y(t), \\
(G = 0) \xrightarrow{\frac{\alpha(y(t))}{\beta(y(t))}} (G = 1).
\end{cases}$$
(6)

If the Gene active periods are short $(\beta \to \infty)$, we obtain the **bursting** model

$$\frac{dy}{dt} = Z(t) - \gamma_2 y(t), \qquad (7)$$

where $Z = \sum_i Z_i \delta_{T_i}$ is a jump process, of jump rate $\alpha(y(t))$ and jump size cumulative distribution **of separated form**

$$\mathbb{P}\big\{y(T_i^+)\geqslant z\mid y(T_i^-)=y\big\}=\exp\Big(-\int_y^z\frac{\gamma_1\beta}{\lambda_1\lambda_2}(w)dw\Big).$$

$$\begin{cases}
\frac{dy}{dt} = G(t) \frac{\lambda_2 \lambda_1}{\gamma_1} (y(t)) - \gamma_2 y(t), \\
(G = 0) \xrightarrow{\beta(y(t))} (G = 1).
\end{cases}$$
(6)

If the Gene active periods are short $(\beta \to \infty)$, we obtain the **bursting** model

$$\frac{dy}{dt} = Z(t) - \gamma_2 y(t) \,, \tag{7}$$

where $Z = \sum_i Z_i \delta_{T_i}$ is a jump process, of jump rate $\alpha(y(t))$ and jump size cumulative distribution **of separated form**

$$\mathbb{P}\left\{y(T_i^+) \geqslant z \mid y(T_i^-) = y\right\} = \exp\left(-\int_y^z \frac{\gamma_1 \beta}{\lambda_1 \lambda_2}(w) dw\right).$$

Remark

For a constitutive gene, $b:=\frac{\lambda_1\lambda_2}{\gamma_1\beta}$ is the average number of proteins produced per Gene activation event.

$$\begin{cases}
\frac{dy}{dt} = G(t) \frac{\lambda_2 \lambda_1}{\gamma_1} (y(t)) - \gamma_2 y(t), \\
(G = 0) \xrightarrow{\beta(y(t))} (G = 1).
\end{cases} (6)$$

If the Gene active periods are short $(\beta \to \infty)$, we obtain the bursting model

$$\frac{dy}{dt} = Z(t) - \gamma_2 y(t) , \qquad (7)$$

where $Z = \sum_i Z_i \delta_{T_i}$ is a jump process, of jump rate $\alpha(y(t))$ and jump size cumulative distribution **of separated form**

$$\mathbb{P}\left\{y(T_i^+) \geqslant z \mid y(T_i^-) = y\right\} = \exp\left(-\int_y^z \frac{\gamma_1 \beta}{\lambda_1 \lambda_2}(w) dw\right).$$

Remark

The bursting limit is a way to introduce 'complicated' post-transcriptional regulation without too much cost in terms of 'mathematical complications'....

Small disgression

Adiabatic reduction like $x(t) \approx G(t) \frac{\lambda_1}{\gamma_1}(y(t))$ are not really rigorous...

- \rightarrow x is a fast variable and does not converge in pointwise manner but 'only' in $L^1(0, t)$.
- \rightarrow The slow variable y only 'sees' **time averaged** variation

Small disgression

This can be (one!) explanation of general disagreement between (bulk) RNA-Seq and Proteomics...

Small disgression 2

Remark

For the '2-stage' model (Telegraph process),

$$\begin{cases}
\frac{dx}{dt} = G(t)\lambda(x(t)) - \gamma x(t), \\
(G = 0) \xrightarrow{\alpha(x(t))} G = 1.
\end{cases}$$
(8)

'general' analytical solution are **available** (See Boxma et al. 2005)

$$\frac{du^*}{dx} = \left[\frac{\alpha(x)}{\gamma x} - \frac{\beta(x)}{\lambda(x) - \gamma x} - \frac{\lambda(x)/x - \gamma + \gamma x(\lambda'(x) - \gamma)/(\lambda(x) - \gamma x)}{\lambda(x)}\right] u^* \quad (9)$$

Small recap'

- We performed an adiabatic reduction to make the problem analytical tractable.
- We solved the reduced problem for arbitrary coefficients at equilibrium.
- We performed an (deterministic-analogous) bifurcation study.

Inverse Problem :(u^*) \Rightarrow (λ, γ, b)

For a constitutive gene, we can infer the burst rate (in protein lifetime unit) $\frac{\lambda}{\gamma}$ and the mean burst size b from the first two (stationary) moments

$$\frac{b\lambda}{\gamma} = \mathbb{E}[X],$$

$$b = \frac{Var(X)}{\mathbb{E}[X]}.$$

For an auto-regulated gene, we can inverse the formula for the stationary pdf :

$$\frac{(xu^*(x))'}{u^*(x)} = \frac{\lambda(x)}{\gamma} - \frac{x}{b}.$$

Simulated data

First step: Density reconstruction by Kernel Density Estimate

Inferred bursting rate

 \rightarrow 'semi-parametric' inference : highly sensitive to the burst mean \boldsymbol{b}

Resulting Probability Density Function

Single cell data on self-regulating gene

Noise Can Induce Bimodality in Positive Transcriptional Feedback Loops Without Bistability Tsz-Leung To, et al. Science 327, 1142 (2010);

Science **327**, 1142 (2010); DOI: 10.1126/science.1178962

- Synthetic Tet-Off in budding yeast.
- Feedback modulated by an external parameter (doxycycline)

1) Kernel Density Estimation

2) Finding the 'best' mean burst size (KL distance)

Fix b, infer λ , compute KL distance, modify b, etc...

3) Inferred burst rate

3) Inferred mean burst size

4) Resulting Probability Density Function

Small recap' on the inverse problem

- With the help of the full solution, we obtained a formula to find the parameter functions from the stationary density.
- We applied this on simulated and real data.
- The inverse problem is generally ill-posed (cannot find burst size b and burst rate λ at the same time).
- Although the resulting pdf does usually 'fit' the data.
- Work still on progess...

Can we deal with cell population?

Similar results may be obtained for a 'bursting-division' model.

$$Lf(x) = d(x) \int_0^x (f(y) - f(x)) \kappa(x, y) dy$$
$$+ \lambda(x) \int_0^\infty (f(x + y) - f(x)) h(x, y) dy$$

For instance, with uniform repartition kernel $(\kappa(x,y)=1/x)$, constant division rate d and constant exponential burst size $(h(x,y)=\exp(-y/b))$,

$$\frac{d}{dy}u^* = \left[-\frac{\lambda'(y) + d}{\lambda(y) + d} + \frac{\lambda(y)}{\lambda(y) + d} \left(\frac{1}{x} + \frac{1}{b} \right) - \frac{xb^2}{bx + 1} - \frac{1}{x} \right] u^*(y)$$

This may be used to predict the long time behavior of a dividing cell population

scenario 1

scenario 2

Thanks for your attention!

- Molecular distributions in gene regulatory dynamics, M.C Mackey, M. Tyran-Kamińska and R.Y., Journal of Theoretical Biology (2011) 274:84-96
- Dynamic Behavior of Stochastic Gene Expression Models in the Presence of Bursting, M.C Mackey, M. Tyran-Kamińska and R.Y., SIAM Journal on Applied Mathematics (2013) 73:1830-1852
- Adiabatic reduction of a model of stochastic gene expression with jump Markov process, R.Y., C. Zhuge, J. Lei, M.C Mackey, Journal of Mathematical Biology (2014) 68:1051-1070