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Goodwin’s model
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Goodwin (1965), Griffith (1968), Othmer (1976), Selgrade (1979)...



Goodwin’s model
The transcription rate function ),

» Inducible Operon : Repressors R interacts with both the
Operator O and the Effector E,
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» Repressible Operon : Similar but
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Goodwin’s model

Bifurcation analysis in ODE dx
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Stochastic model

Eldar and Elowitz (Nature 2010)
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— ODEs are forbidden !



Stochastic model
'New' Central dogma
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Rigney & Schieve (1977), Berg (1978), Peccoud & Ycart (1995), Thattai & Van Oudenaarden (2001)...




Stochastic model

Can we perform a systematic bifurcation theory on such

systems ?

» We are interested in long time behavior.

» We want to know how many modes has the stationary
distribution.

» This requires in practice "analytical’ solution.



Stochastic model

Can we perform a systematic bifurcation theory on such

systems ?

» We are interested in long time behavior.

» We want to know how many modes has the stationary
distribution.

» This requires in practice "analytical’ solution.

— | don’t know how to do it, let’s reduce the model!



Stochastic model

A subclass of the 'three-stage’ (DNA, mRNA, Protein) model is
the 1D-bursting model (Storage model)

o]

LF(x) = =v()f'(x) + A(x) f (F(x +y) = f(x))h(x,y)dy

0
degradation L

1
bursting

where

» «v : degradation rate (deterministic drift)
» X : bursting rate (jump intensity)

» h : bursting size distribution (jump size), SSO h(x,y)dy = 1.
Time-dependent probability density u(x, t) satisfies

du(x,t) dy(xu(x,t) )\

= —A(x)u(x,t) —i—f Ay)h(y,x — y)u(t,y)dy
ot Ox L o
! degradation ! bursting from x 1 |

bursting to x



Stochastic model

Q0

LF(x) = —4(0F'(3) + Ax) fo (F(x + y) — F(x)h(x, y)dy
degradation L borete 1

Typical example for h is given by the exponential distribution , with
jump size independent of the starting point,

1
hix,y) = L exp(~y/b) , fyh(x,y)dy =b.
Any stationary distribution u* satisfies

Q0
f Lf(x)u*(x)dx = 0, V (suitable) test function f (3)
0

— it seems difficult to solve (3) for "general” h



Stochastic model

LF(x) = =v()f'(x) + A(x) Jooo(f(x +y) = f(x))h(x, y)dy

degradation L 1
bursting

If his generalized exp. distribution with "x-dependent” burst size,
Vx+y)

V(%)
h(x,y) b(Xlﬂ) exp (— L - 1/b(z)> (%) — exp (— fx l/b(z)dz>

then any stationary distribution u* satisfies

[ =200 60 + 000 [ AL (y)ay ] (e = 0.
0 o v(y)

which leads to

h(Xv.y):_ 71/\07




Stochastic model

Theorem

If v > 0 is continuous, Sg %dx =0, v>0abs. CO v\, 0

OO A0 OO M)

J &eg "W ¥dx < o0, and J (—/(x))e 0¥ dx < oo,
o 7(x 0

then u(t,x) converges (for any initial density) towards u*, e.g.

0
f | u(t,x) — u*(x) | dx - 0,as t — .
0



Stochastic model

Theorem
If v > 0 is continuous, Sg %dx =00, v>0abs. CO v\, 0
“ x Ay) @ x Ay)
J @eg 0¥ dx < oo, and f (—V’(x))es Y dx < o0,
o 7(x) 0
then u(t, x) converges (for any initial density) towards u*, e.g.
o0
f L u(t,x) — 0" (x) | dx — 0, s t — .
0

— The proof is based on Foguel’s alternative : roughly, if all states
communicate, then either you have either convergence or 'escape’.



Stochastic model

Theorem
If v > 0 is continuous, Sg %dx =0, v>0abs. CO v\, 0
@ x A) @ x A
J Mes 0¥ dx < oo, and J (—I/,(X))es Y dx < o0,
o () 0
then u(t, x) converges (for any initial density) towards u*, e.g.

0
f L u(t, %) — u*(x) | dx —> 0, as £ — 0.
0

Remark

If the first integral is infinite, then the process 'escape’ towards 0
or oo (in infinite time). If the second integral is infinite, there is
explosion in finite time.



Stochastic model

Theorem

If v > 0 is continuous, Sg %dx =0, v>0abs. CO v\, 0
@ x A) @ x )

J Mes 0¥ dx < oo, and J (—V'(x))es Y dx < 0,
o Y(X) 0

then u(t, x) converges (for any initial density) towards u*, e.g.

0
f L u(t, %) — u*(x) | dx —> 0, a5 t — 0.
0

Remark

Under different conditions, one may prove exponential convergence
(even for 'general’ h) without explicit u* (cf Meyn-Tweedie
approach).



Stochastic model

Stationary distribution (\,v,v) = (u*)




Stochastic model

Bifurcation analysis in

v(x) *Aly)
u*(x) = exp f dy
>DE ) Cy(x) ( 7(y) )
o du* x.1 u*(x)
N dx [)\(X) i E)] x
N with v(x) = exp(—x/b) and v(x) = yx.
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x EEELTEN

Inducible :
Uni-modal or
Bi-modal.

v

v

Repressible :
Uni-modal.




Stochastic model

» Careful ! The two notions of deterministic bistability and
'stochastic bistability’ (bimodality) are in fact quiet different
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Stochastic model

» Careful ! The two notions of deterministic bistability and
'stochastic bistability’ (bimodality) are in fact quiet different
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» (mean) Switching time : can quantify the 'stability’ of each
state. MFPT are also explicit if

hx,y) = a5y o0 (= 557 1/b(2))




Stochastic model

For x < xp, the MFPT to reach a lower level x from xp is

o [ © Ay ([T W) ap)-ow) g,
Vistoo) = | v(y)d”fx v(y)u(y)fy A vy

For z > xg. The MFPT to reach a higher level z from xg is

o - [[Y) em-amy,  [T_L
Vii.z(x0) LV(Y)V(Z) il Lﬂ(y)dy

FAW) (M) em)-am) gy,
+LJ v(y)V(y)Jo y(w)© chwdly

Remark
FPT are strongly asymmetric here.



Stochastic model

The mean waiting time is non-monotonic with respect to the
bursting rate (even for fixed mean).

Mean waiting time to go up from x=1 to z=10 Mean waiting time to go down from z=10 to x=1
10




Stochastic model

From the 3-stage to the bursting model ?

;;; = G(t)A1(y(t)) —y1x(t),
dit’ = ax(t) —ray(1), (4)
Go0) SO oy
Bly(t))

» If the mRNA lifetime si short (71 — ), we can perform an
. . . - AL .
adiabatic reduction (x(t) ~ G(t)5t(y(t))) :

% = G022 (y(t) — pax(t),
(6-0 2L (61, ¥
B(y(1))




Stochastic model

% = G(t)%(y(t)) —72y(t), 6
(6=0 X2 (G-1). ?

B(y(t))

» If the Gene active periods are short ( — 0), we obtain the
bursting model

dy
- =Z(t) — t 7
Y~ Z(t) - y(t), 7)
where Z = > . Z;07, is a jump process, of jump rate a(y(t))
and jump size cumulative distribution of separated form

]P’{y(T’ﬂr) >z |y(T7) = y} = exp ( _ ‘ ;’i\i(w)dw) .




Stochastic model

% = G(t)%(y(t)) —72y(t),
(G=0) . (-1, ©

By (1)

» If the Gene active periods are short (3 — ), we obtain the
bursting model

dy

27—

o = 20 = ny(t), (7)
where Z = ). Z;07, is a jump process, of jump rate a(y(t))
and jump size cumulative distribution of separated form

* mp
SO (W)dW) .

P(TH) =21 y(T) =y} =e (-

Remark

For a constitutive gene, b := )‘711)52 is the average number of

proteins produced per Gene activation event.




Stochastic model

% = G(t)%(y(t)) —72y(t),
(G=0) . (-1, ©

Bly(1)

» If the Gene active periods are short (3 — o), we obtain the
bursting model

Y 20t~ y(t), 7

where Z = Y. Z;67, is a jump process, of jump rate a(y(t))
and jump size cumulative distribution of separated form

P{y(T") =z |y(T;) =y} =exp ( - fy ;fi (w)dw) .

Remark

The bursting limit is a way to introduce 'complicated’
post-transcriptional regulation without too much cost in terms of
'mathematical complications'....



Stochastic model

Small disgression

Adiabatic reduction like x(t) ~ G(t)2L(y(t)) are not really
rigorous...

— x is a fast variable and does not converge in pointwise manner
but 'only’ in L1(0, t).

— The slow variable y only 'sees’ time averaged variation



Stochastic model

Small disgression

This can be (one!) explanation of general disagreement between
(bulk) RNA-Seq and Proteomics...
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Stochastic model
Small disgression 2

Remark
For the '2-stage’ model (Telegraph process),

% = G(HAx(t) — x(t), .
(-0 2 (G-1). ?

B(x(1))

'general’ analytical solution are available (See Boxma et al. 2005)




Small recap’

» We performed an adiabatic reduction to make the problem
analytical tractable.

» We solved the reduced problem for arbitrary coefficients at
equilibrium.

» We performed an (deterministic-analogous) bifurcation study.

v,=0.1 v,=1 ¥,=10 7,100




inverse pb

Inverse Problem :(u*) = (X, ~, b)

For a constitutive gene, we can infer the burst rate (in protein
lifetime unit) % and the mean burst size b from the first two
(stationary) moments

b\

e [X].
_ Var(X)
°7EX]

For an auto-regulated gene, we can inverse the formula for the
stationary pdf :




inverse pb

Simulated data

First step : Density reconstruction by Kernel Density Estimate

025

===True solution
===Kernel density estimation
— Histogram




inverse pb

Inferred bursting rate

Recovering Burst rate

10 r
Estimated rate with the true b
8 = == = True solution
+ Estimated rate with a wrong b
Q
R A
20 + 3|
= 4 + %
4 + ¥
= +
© 9 I
+ +
Al
O 1 1 1 1 1 1 1 1 1 1 1 1

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
protein

— ’semi-parametric’ inference : highly sensitive to the burst
mean b



inverse pb

Resulting Probability Density Function

Resulting density

03 == == = True solution

KDE
Fit with the true b
Fit with the wrong b

01 2 3 4 5 6 7 8 9
protein

10 11 12 13 14 15



inverse pb

Noise Can Induce Bimodality in Positive

Single cell data on
. Transcriptional Feedback Loops Without Bistabilit:
self-regulating gene TS Eina T, e ol P y

Science 327, 1142 (2010);

° o DOI: 10.1126/science.1178962
° Dox
tTA YFP
E < + Synthetic Tet-Off in buddin
NxtetQl his3 [7xtetO] leu? y g
yeast.
1xtetO » Feedback modulated by an

external parameter
(doxycycline)

=_—

10> 10*° 10

TxtetO

yibuans yoeqpeaq

———

10° 10
YFP reporter [AFU]



inverse pb

1) Kernel Density Estimation

YFP Reporter



inverse pb

2) Finding the 'best’ mean burst size (KL distance)

Fix b, infer A\, compute KL distance, modify b, etc...

KL-Error as a fonction of b

™R

_6 1 1 1 1 1 1 1 1 1 1 1
25 -2 -15 -1 05 0 05 1 15 2 25

log;,(b)



inverse pb
3) Inferred burst rate

Estimating burst rates

100

(9]
(e}

Burst rate

5
protein



inverse pb

3) Inferred mean burst size

Burst size value for the Best fit
0.065

0.06 r
0.055 |

0.05 r

0.045

Experiment



inverse pb

4) Resulting Probability Density Function

55 Fitting with estimating rates

protein



Small recap’ on the inverse problem

v

With the help of the full solution, we obtained a formula to
find the parameter functions from the stationary density.

» We applied this on simulated and real data.

» The inverse problem is generally ill-posed (cannot find burst
size b and burst rate \ at the same time).

v

Although the resulting pdf does usually 'fit" the data.

v

Work still on progess...



With division

Can we deal with cell population ?

Similar results may be obtained for a 'bursting-division' model.

LF(x) = d(x) [ (F(3) — FG0)n(x.y)dy

200 [ C(F(x + y) — F())h(xy)dy

For instance, with uniform repartition kernel (k(x,y) = 1/x),
constant division rate d and constant exponential burst size

(h(x,y) = exp(—y/b)),

/ X2 .
T e A e R R R

x+b

Cobx+1 x



With division

This may be used to predict the long time behavior of a dividing
cell population

scenario 1 scenario 2

A cell tree A cell tree

IiIistogram and analytical solution Iilistogram and analytical solution

0.5 0.5

0 0
-1-05005 1152253354 -1-05005 1152253354



With division

Thanks for your attention!
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